K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

Đặt \(\sqrt[3]{2}=a\Leftrightarrow a^3=2\). Ta chứng minh \(\sqrt[3]{a-1}=\frac{a^2-a+1}{\sqrt[3]{9}}\)

Lập phương hai vế ta có :

\(a-1=\frac{\left(a^2-a+1\right)^3}{9}\Leftrightarrow9\left(a-1\right)\left(a+1\right)^3=\left(a+1\right)^3\left(a^2-a+1\right)^3\)

                             \(\Leftrightarrow9\left(a-1\right)\left(a^3+3a^2+3a+1\right)=\left(a^3+1\right)^3\)

                             \(\Leftrightarrow9\left(a-1\right)\left(3+3a^2+3a\right)=27\)

                             \(\Leftrightarrow3\left(a-1\right)\left(a^2+a+1\right)=3\)

                             \(\Leftrightarrow a^3-1=1\)

                             \(\Leftrightarrow a^3=2\)

Đẳng thức cuối đúng nên ta có điều phải chứng minh

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....

 

4 tháng 5 2016

Với mọi \(k\ge2\)  thì \(\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}=\frac{\left[\left(\sqrt{k-1}\right)^2+\left(\sqrt{k+1}\right)^2+\sqrt{\left(k-1\right)\left(k+1\right)}\right]\left(\sqrt{k+1}-\sqrt{k-1}\right)}{\left(\sqrt{k-1}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k-1}\right)}\)

                                                \(=\frac{\sqrt{\left(k+1\right)^3}-\sqrt{\left(k-1\right)^3}}{2}\)

Suy ra tổng đã cho có thể viết là :

\(A=\frac{1}{2}\left[\sqrt{3^3}-\sqrt{1^3}+\sqrt{4^3}-\sqrt{2^3}+\sqrt{5^3}-\sqrt{3^3}+\sqrt{6^3}-\sqrt{4^3}+...+\sqrt{101^3}-\sqrt{99^3}\right]\)

    \(=\frac{1}{2}\left[-1-\sqrt{2^3}+\sqrt{101^3}+\sqrt{100^3}\right]\)

   \(=\frac{999+\sqrt{101^3}-\sqrt{8}}{2}\)

4 tháng 5 2016

\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đềuAE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)\(\hept{\begin{cases}BD\perp SO\\BD\perp...
Đọc tiếp

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)
=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)

b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đều

AE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)

AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)

\(\hept{\begin{cases}BD\perp SO\\BD\perp AC\end{cases}\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC}\)

(AMEN)\(\perp\)SC => MN \(\perp\)SC => MN //BD => \(\frac{MN}{BD}=\frac{SG}{SO}=\frac{2}{3}\Rightarrow MN=\frac{2}{3}BD=\frac{2a\sqrt{2}}{3}\)

\(S_{AMEN}=\frac{1}{2}MN.AE=\frac{1}{2}.\frac{2a\sqrt{2}}{3}.\frac{a\sqrt{6}}{2}=\frac{a^2\sqrt{3}}{3}\)

\(\frac{V_{SAMEN}}{V_{SABCD}}=\frac{SM}{SB}.\frac{SE}{SC}.\frac{SN}{SD}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}\)

\(\Rightarrow V_{SAMEN}=\frac{2}{9}.\frac{a^3\sqrt{6}}{6}=\frac{a^3\sqrt{6}}{27}\)

phần trả lời bên dưới là câu 4

1
5 tháng 8 2019

I*AB=> SI\(\perp\)AB

SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)

b) Kẻ IK//DM(K\(\in\)AD)

Kẻ KH\(\perp\)DM(H\(\in\)DM)

=> d(I,DM)=d(K,DM0=KH

\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6

\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)

=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)

d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)

26 tháng 3 2016

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

4 tháng 5 2016

Ta có:

\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;

\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;

\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)

\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)

4 tháng 5 2016

Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)