Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần này có nè
http://olm.vn/hoi-dap/question/436332.html
http://olm.vn/hoi-dap/question/436332.html
A = 1 + 19^19+93^199+1993^1994 = ......26
=> số trên không phải là số chính phương
Ta có:
\(1+19^{19}+\left(93^2\right)^{99}.93+\left(1992^2\right)^{997}=1+\left(...9\right)+\left(..9\right).93+\left(..9\right)\)
\(=\left(...26\right)\)
Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ;
Ở đây ta thấy hàng chục là 2(số chẵn)
\(\Rightarrow\)\(1+19^{19}+93^{199}+1993^{1994}\)ko phải là số chính phương.
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
thầy sửa ồi , chỗ 19^2014 ko có số mũ đâu con là 19
đó
93^2015 = 93^4.504 +3(4.504+3 nhá ko fai 93^4.504+3 mô) =(.....1).27 =....27
1993^2016=1993^4.504=....1
=>A có tận cùng =:1+9+7+1=18=>A tận cùng =8
mà không có số chính phương tận cùng =8=>A không là số chính phương .
CHỌN CỦA HIẾU NHÉ !!!!
ko bt đúng hay sai, bn kiểm tra lại nhé:
\(A=1+19+93^{2015}+1993^{2016}\)
Ta có: \(93^{2015}=\left(93^2\right)^{1007}.93=....9^{1007}.93=....9.93=....7\)
=> \(93^{2015}\) có tận cùng là 7
\(1993^{2016}=....1\)
=>\(1993^{2016}\)có tận cùng là 1
1 có tận cùng là 1; 19 có tận cùng là 9
=>\(A=1+19+93^{2015}+1993^{2016}=....1+....9+....7+....1=....8\)
vậy A có tận cùng là 8=> A ko là số chính phương
A = 1 + (19)19 + (932)99. 93 + (19932)997 = 1 + (...9) + (....9) . 93 + (...9) = ...26
Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ;
Ở đây ta thấy hàng chục là số 2 (chẵn). => A không phải là số chính phương