Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
11...1 chia hết cho 81= 11...1 chia hết cho 9*9
- tổng các chữ số là: 1+1+1+1+1+1...+1= 81 chia hết cho 9 =9 chia hết cho 9
nên 111...1 chia hết cho 81.
bạn vào link này
nhưng vẫn tiick cho mình nha
https://pitago.vn/question/chung-minh-rang-a-so-gom-81-chu-so-1-chia-het-cho-81-b-4105.html
ok t ick nhá
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Ta có : 1.81=81
=> 81chia hết cho 81
Vậy 81 chữ số 1 chia hết cho 81
Đặt A = 111....1 (27 chữ số 1 )
Ta có: A = 111..100..0 (9 chữ số 1 và 18 chữ số 0 ) + 111..100..0 (9 chữ số 1 và 9 chữ số 0 ) + 111...11 (9 chữ số 1 )
= 11..1 x 1018 + 11...1 x 109 + 111..1 = 11...1 x (1018 + 109 + 1)
Vì 111...1 (9 chữ số 1) => tổng các chữ số = 9 chia hết cho 9 nên 111...1 chia hết cho 9
(1018 + 109 + 1) có tổng các chữ số bằng 3 nên chia hết cho 3
=> A = 9k. 3.k' = 27.k.k' => A chia hết cho 27
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
Đặt A = 1111....1111 (27 chữ số 1)
A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)
= 111...1 . 1018 + 111...1 . 109 + 111...1
= 111...1 .(1018 + 109 + 1)
Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)
và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)
nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)