K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

(6n+5) và ( 2n+1) 

Gọi d là ƯC ( 6n+5) và  (2n+1)

=> (6n+5) chia hết d và ( 2n+1) chia hết d

=> ( 6n+5) chia hết d và 3( 2n+1) chia hết d

=> [ ( 6n+5)  - ( 6n + 3 ) ] chia hết d

=> 2 chia hết d

=> d = 1 hoặc 2 

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

28 tháng 11 2014

Gọi d là ƯCLN(2n+1;6n+5)

=>2n+1 chia hết cho d và 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d

=>6n+3 chia hết cho d và 6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2

Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.

29 tháng 7 2016

Gọi (2n + 1,6n + 5) = d (d \(\in\)N)

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}

Mà d là lớn nhất nên d = 2

Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2

=> (2n + 1,6n + 5) = 1

Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N

Ủng hộ mk nha !!! ^_^

29 tháng 7 2016

Gọi d là Ưcln của 2n + 1 và 6n + 5

Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d

Mà ưc của 2 là 1 => d = 1

VậY (đpcm_)

18 tháng 12 2014

dk kái đó gọi là chứng minh phản chứng

 

23 tháng 12 2015

trong chtt có 

tick nha

23 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

17 tháng 3 2017

Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :

\(2n+1⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=2\)

Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau

31 tháng 7 2018

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

4 tháng 12 2018

Gọi ƯCLN ( 2n+1, 6n+4) là d ( d thuộc N)

Ta có:

2n + 1 chia hết chia cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d     (1)

6n+4 chia hết cho d                                                                                               (2)

Từ (1), (2) suy ra:

(6n+4) - (6n+3) chia hết cho d

                      1 chia hết cho d

=>                   d=1

=>                    ƯCLN(2n+1,6n+4) = 1

Vậy 2n+1 và 6n+4 là hai số nguyên tố cùng nhau