Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)>0\)
Ta có: \(\frac{1}{2^{12}}-1=\left(\frac{1}{2}-1\right)\left(\frac{1}{2^{11}}+\frac{1}{2^{10}}+\frac{1}{2^9}+...+\frac{1}{2}+1\right)\)
\(\Rightarrow1+\frac{1}{2}+...+\frac{1}{2^{11}}=2\left(1-\frac{1}{2^{12}}\right)=2-\frac{1}{2^{11}}\)
\(\Rightarrow2-\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)=2-\left(2-\frac{1}{2^{11}}\right)=\frac{1}{2^{11}}>0\left(đpcm\right)\)
1-1/2-1/2^2-......-1/2^11
ta có:1-1/2-1/2^2-.....-1/2^11=1-(1/2+1/2^2+....+1/2^11)
A=1/2+1/2^2+1/2^3+...+1/2^11
2A=2.(1/2+1/2^2+1/2^3+...+1/2^11)
2A=2.1/2+2.1/2^2+....+2.1/2^11
2A-A=(1+1/2^2+1/2^3+...+1/2^10)-(1/2+1/2^2+1/2^3+....+1/2^11)
A=1-1/2^11=2048/2048-1/2048=2047/2048
vì 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-A
=> 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-2047/2048=2048/2048-2047/2048=1/2048=1/2^11
vậy 1-1/2-1/2^2-1/2^3-...-1/2^11=1/2^11
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))
S1 = 1-(1/2*2 + 1/3*3 + 1/4*4 +....+1/10*10)
Coi A = 1/2*2 +1/3*3 +1/4*4 +...+1/10*10
Ta thấy : 1/2*2 < 1/1*2
1/3*3 < 1/2*3
...1/10*10 < 1/9*10
=> A < 1/1*2 + 1/2*3 + 1/3*4 +...+1/9*10 = 9/10
=> 1 - A > 1 - 9/10
=> S1 > 1/10 > 0