K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

theo đầu bài ta có

x1x2<0

Ta sử dụng hệ thức VIet

x1x2=\(\frac{c}{a}\)=-1

=> Pt có 2 nghiệm trái dấu

Phần còn lại tính nghiệm ra rồi thay vao máy tính tính

22 tháng 5 2017

giảm bậc bạn

29 tháng 5 2017

bạn giúp mình được k

24 tháng 5 2021

a)Có ac=-1<0

=>pt luôn có hai nghiệm trái dấu

b)Do x1;x2 là hai nghiệm của pt

=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)

=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)

20 tháng 5 2023

1) \(\Delta'=1-m>0\forall m< 1\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt

2) Do a = 1; c = -1 nên a và c trái dấu

Do đó phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

13 tháng 1 2023

\(x^2-11x+m-2=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)

\(\Leftrightarrow121-4m+8>0\)

\(\Leftrightarrow m< \dfrac{129}{4}\)

Theo hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).

Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)

Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)

\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)

\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)

\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)

\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)

\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)

Thay \(x_1=3\) vào (1') ta được:

\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)

Thay \(x_1=8\) vào (1') ta được:'

\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)

Vậy giá trị m cần tìm là 26.