Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hàm số f ( x ) = m x − 1 3 . ( x 2 − 4 ) + x 4 – 3 trên các đoạn [−2; 1], [1; 2]
Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
Ta có \(f\left(0\right)=-1\)
\(f\left(-1\right)=m^2+1\)
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(\Rightarrow f\left(a\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)
Vậy \(f\left(x\right)\) luôn có ít nhất 3 nghiệm thực
Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)
Hàm số liên tục trên R
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m
Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)
Hàm \(f\left(x\right)\) liên tục trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)
\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)
\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)
Vậy pt đã cho luôn có ít nhất 3 nghiệm thực
Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=1>0\)
\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m
Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(1\right)=-2< 0\)
\(f\left(2\right)=13>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)
\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt