K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi AD và A'D' lần lượt là phân giác của tam giác ABC tại góc BAC và tam giác A'B'C' tại góc B'A'C'
tam giác ABC ~ tam giác A'B'C' => góc BAC = góc B'A'C'
=> góc BAD = 1/2 góc BAC = 1/2 góc B'A'C' = góc B'A'D' (AD và A'D' là phân giác)
Xét tam giác ABD và tam giác A'B'D' có :
1. góc ABD = góc A'B'D' ( do tam giác ABC ~ tam giác A'B'C' )
2. góc BAD = góc B'A'D' ( cmt )
Vậy tam giác ABD ~ tam giác A'B'D' (g-g)
=> AD/A'D' = AB/A'B' = k
CMTT cho phân giác 2 góc còn lại ta cũng có điều cần chứng minh.

12 tháng 6 2021

theo giả thiết \(\Delta ABC=\Delta EFG\)\(=>\) góc ABH=góc EFI

và AB=EF

có \(\left\{{}\begin{matrix}AH\\EI\end{matrix}\right.\) là các đường phân giác tương ứng

=>góc BAH= góc FEI

xét tam giác ABH và tam giác EFI có:

góc BAH=góc FEI

AB=EF

góc ABH=góc EFI=>tam giác ABH=tam giác EFI(g.c.c)

=>AH=EI(dpcm)

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b,c: Bạn ghi rõ đề lại đi bạn

11 tháng 12 2018

Nếu vẽ được hình càng tốt nhé. Thanks

1 tháng 8 2018

Ta có AA′⊥ AB′ vì chúng là hai tia phân giác của hai góc kề bù. Tương tự AA′⊥ AC′. Vì qua A chỉ có một đường vuông góc với AA' nên ba điểm B', A, C' thẳng hàng và AA′⊥ B′C′, hay A'A là một đường cao của tam giác A'B'C'. Hoàn toàn tương tự ta chứng minh được BB' và CC' là hai đường cao của tam giác A'B'C'.

Mặt khác theo cách chứng minh của bài 9.5 ta có AA', BB', CC' là ba tia phân giác của các góc A, B, C của tam giác ABC. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C'.

undefined

Tham khảo: