Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: p,q là 2 số nguyên tố lớn hơn 3\(\Rightarrow p\) \(lẻ\)
\(\Rightarrow p-1;p+1;q-1;q+1⋮2\)
\(Do\) \(p-1;p+1\) \(là\) \(2\) \(số\) \(chẵn\) \(liên\) \(tiếp\)\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮4.2=8\)
\(Tương\) \(tự\) \(với\) \(\left(q-1\right)\left(q+1\right)\Rightarrow\left(q-1\right)\left(q+1\right)⋮8\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)\left(q-1\right)\left(q+1\right)⋮8.8=64\) \(\left(1\right)\)
\(Do\) \(p-1;p;p+1\) \(là\) \(3\) \(số\) \(tự\) \(nhiên\) \(liên\) \(tiếp\) \(nên\) \(chắc\) \(chắn\) \(có\) \(1\) \(số⋮3\) \(mà\) \(p\) \(là\) \(số\) \(nguyên\) \(tố\)
\(\Rightarrow p-1\) \(hoặc\) \(p+1⋮3\)
\(Tương\) \(tự\) \(với\) \(\left(q-1\right)\left(q+1\right)\Rightarrow\left(q-1\right)\left(q+1\right)⋮3\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)\left(q-1\right)\left(q+1\right)⋮3.3=9\) \(\left(2\right)\)
\(Từ\) \(\left(1\right)\) \(và\) \(\left(2\right)\)\(\Rightarrow\left(p-1\right)\left(p+1\right)\left(q-1\right)\left(q+1\right)⋮64.9=576\)
\(\left(đpcm\right)\)
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24