Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Với p=2 thì p= 2+2=4 LÀ HỢP SỐ
p=2+4=6 LÀ HỢP SỐ
vậy p=2 loại
+) Với p=3 thì p= 3+2 = 5 là số nguyên tố
3+4=7 là số nguyên tố
Vậy p=3 nhận
+) Với p<3 thì p=3k+1 hoặc 3k+2
TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số
vậy p=3k+ 1 loại
TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2 là hợp số
vậy p=3k+ 2 loại
vậy p = 3 thì p+2 và p+4 là các số nguyên tố
a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
p<p+4 nguyen to => p<p+4 dang 3k +1
=>p+8 dang 3k+9
3k chia het cho 3
9 chia het cho 3
=> 3k +9 là hợp số =>p +8 là hợp số
Giải:
Ta xét các trường hợp:
Nếu \(p=2\) thì \(p+20=22\) không là số nguyên tố (loại)
Nếu \(p=3\) thì \(\left\{{}\begin{matrix}p+20=23\\p+40=43\\p+80=83\end{matrix}\right.\) đều là số nguyên tố (chọn)
Nếu \(p>3\) thì ta có 2 dạng là \(\left[{}\begin{matrix}3k+1\\3k+2\end{matrix}\right.\)
\(*)\) Với \(p=3k+1\) ta có:
\(p+20=\left(3k+1\right)+20=3k+21\) \(=3\left(k+7\right)\)
Dễ thấy \(\left[{}\begin{matrix}3\left(k+7\right)⋮3\\3\left(k+7\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+7\right)\) là hợp số (loại)
\(*)\) Với \(p=3k+2\) ta có:
\(p+20=\left(3k+2\right)+40=3k+42\) \(=3\left(k+14\right)\)
Dễ thấy \(\left[{}\begin{matrix}3\left(k+14\right)⋮3\\3\left(k+14\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+14\right)\) là hợp số (loại)
Vậy với \(p=3\) thì \(p+80\) cũng là số nguyên tố (Đpcm)
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
nhầm đề , đây là bài đúng ! ^.^
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
2/ Đặt Q(x)=P(x)-(x+1)
Q(1999)=P(1999)-(1999+1)=2000-2000=0
Q(2000)=P(2000)-(2000+1)=2001-2001=0
=>x-1999,x-2000 là các nghiệm của Q(x)
Đặt Q(x)=(x-1999)(x-2000).g(x)
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1)
=>Q(x) =(x-1999)(x-2000).( ax+b)
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1)
P(2001)=(2001-1999)(2001-2000)
(a.2001+b)+(2001+1)
=2(2001a+b)+2002
=4002a+2b+2002
P(1998)= (1998-1999)(1998-2000)(a.1998+b)
+(1998+1)
=2(a.1998+b)+1999
=3996a+2b+1999
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999
=6a+3
=3(a+2)
Do a thuộc Z,a khác -1
=>a+2 thuộc Z,a+2 khác 1
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3
=>3(a+2) là hợp số
=> P(2001) - P(1998) là hợp số