Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do p nguyên tố nên:
+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)
+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)
+) Xét p > 3 => p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3 => p2 + 8 là hợp số (loại)
Khi p = 3k + 2 => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3 => p2 + 8 là hợp số (loại)
=> p = 3 để p và p2 + 8 là nguyên tố
Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố
Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.
TH1:p<3
+Vì p<3;mà p là số nguyên tố =>p=2.
Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)
TH2:p>3
+vì p>3 nên=>p=6k+1 hoặc p=6k+5.
Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là hợp số nên loại)
Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)
Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.
Do p là số nguyên tố nên p là số tự nhiên.
Xét p = 3k + 1=> p2 + 8 = ( 3k + 1 )2 + 8 = 9k2 + 6k + 9 \(⋮\) 3 ( là hợp số )
Xét p = 3k + 2 => p2 + 8 = ( 3k + 2 )2 + 8 = 9k2 + 12k + 12 \(⋮\) 3 ( là hợp số )
Xét p = 3k => k = 1 do p là số nguyên tố => p2 + 8 = 9 + 8 = 17 ( thỏa mãn )
Ta có : p2 + 2 = 11. Mà 11 là số nguyên tố => Điều cần chứng minh
Bài này cũng giống như bài tìm p nguyên tố sao cho p2+8 là số nguyên tố thôi
Cách làm cũng giống luôn
Xét p=2
... loại
Xétp=3
... thỏa mãn
Xét p> 3 thì dùng đồng dư
Ta có: \(p\equiv\pm1\left(mod3\right)\)
\(\Rightarrow p^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2+8\equiv9\left(mod3\right)\)
\(\Rightarrow p^2+8⋮3\)
Mà \(p^2+8>3\)
Nên là hợp số ( loại)
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
p(p-1)=(q-1)(q-2) (*)
=> p | q-1 hoặc p | q-2
do p nguyên tố, (q-1;q-2)=1
1.Nếu p|q-1 thì p <= q-1
Từ (*) suy ra p-1>=q-2
=> p>=q-1
Do đó p=q-1
Mà p,q nguyên tố nên p=2,q=3
Khi đó p^2+q^2=13 là số nguyên tố
2.Xét p|q-2
Từ (*) => q-2 > 0
Lập luận tương tự TH1 dẫn tới mâu thuẫn