K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

Ta chứng minh p+1 là số chính phương: 
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N) 
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. 
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương 

Ta chứng minh p-1 là số chính phương: 
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2. 
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương . 

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)

6 tháng 1 2016

trả lời xong mình tick cho

30 tháng 12 2015

bạn tick rồi mình làm cho

30 tháng 12 2015

ai tick đến 190 thì mik tick cho cả đời

13 tháng 3 2019

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!