Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
Lời giải:
Nếu $p$ không chia hết cho $3$ thì $p\equiv \pm 1\pmod 3\Rightarrow p^2\equiv 1\pmod 3$
$\Rightarrow 8p^2+1\equiv 8+1\equiv 0\pmod 3$
Mà $8p^2+1>3$ nên $8p^2+1$ không là snt (trái giả thiết)
Vậy $p=3$. Khi đó $8p^2-1=71$ là số nguyên tố (đpcm)
Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:
Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath
ngu cút hỏi nhiều