Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-3}{6}=\frac{2y+10}{10}=\frac{5z-10}{15}=\frac{3x+2y-5z+17}{1}=\frac{3x+2y-5z+16+1}{1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{y+5}{5}=1\\\frac{z-2}{3}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\\z=5\end{matrix}\right.\)
\(\Rightarrow P=3^{2019}+5^{2019}\)
Ta có \(3\equiv-1\left(mod4\right)\Rightarrow3^{2019}\equiv-1\left(mod4\right)\)
\(5\equiv1\left(mod4\right)\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow P\equiv\left(-1+1\right)\left(mod4\right)\Rightarrow P\equiv0\left(mod4\right)\Rightarrow P⋮4\)
Bài 3:
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)
Đặt \(2n+2017=a^2;n+2019=b^2\)
\(\Rightarrow2n+4038=2b^2\)
\(\Rightarrow2b^2-a^2=2021\)
\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)
Tự xét nốt nha
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)
\(\Leftrightarrow2019a+2019b-ab=0\)
\(\Leftrightarrow ab-2019a-2019b=0\)
\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)
\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)
\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )
P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Lời giải:
Sử dụng công thức nội suy Newton:
$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.
Ta có:
$f(2017)=a_1=2018$
$f(2018)=a_1+a_2=2019$
$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:
$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$
Do đó:
$f(2019)=2020+2a_3+2a_4(2019-a)$
$f(2016)=2017+2a_3+2a_4(2016-a)$
$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.
Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương
Do đó $f(2019)-f(2016)$ là hợp số (đpcm)
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.
Lời giải:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3-3ab+1=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)
\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)
Vì $a,b>0$ nên $a+b+1\neq 0$
Do đó:
\(a^2+b^2+1-a-b-ab=0\)
\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)
\(\Rightarrow a=b=1\)
Do đó: \(a^{2018}+b^{2019}=1+1=2\)
Ta có đpcm.
Xin chào bạn ! Mình là youtuber PUBG Takaz đây !