K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Có:

\(f\left(x_1\right)=ax_1+b=0\)

\(f\left(x_2\right)=ax_2+b=0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)

\(\Rightarrow a\left(x_1-x_2\right)=0\)

\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)

\(\Rightarrow a=0\)

\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)

Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.

Vậy f(x) là đa thức 0.

 

Theo đề, ta có:

\(\left\{{}\begin{matrix}1+1+a+b=0\\8+4+2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2\\2a+b=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a=10\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=8\end{matrix}\right.\)

18 tháng 7 2018

1 tháng 2 2016

Chưa phân loại

1 tháng 2 2016

x-y-z=0

=>x=y+z

=>x2=y2+z2+2yz

=>y2+z2=x2-2yz

*A=xyz-xy2-xz2=x.(yz-y2-z2)=x.[yz-(x2-2yz)]=x.(3yz-x2)=3xyz-x3

*B=y3+z3=(y+z)(x2-yz+z2)=x.(x2-2yz-yz)=x3-3xyz=-(3xyz-x3)

Vậy A và B đối nhau

9 tháng 4 2016

Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý

Giả sử x=0;x=1;x=-1 là 3 giá trị đó.

Ta có:f(0)=a.02+b.0+c=c

f(1)=a.12+b.1+c=a+b+c

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Do đó c=0;a+b+c=0;a-b+c=0

=>a-b=0=>a=b

và a+b=0=>a=b=0

Vậy a=b=c=0

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

14 tháng 6 2018

Ta có :

f(9!)-f(8!)=an.((9!)n-(8!)n)+an-1.((9!)n-1-(8!)n-1)+....+a1.(9!-8!)

=2072-2012=60

Ta nhận thấy 9!=1.2.3.4.5.6.7.8.9 và 8 ! = 1.2.3.4.5.6.7.8 nên vế trái của đẳng thức chia hết cho 7,nhưng vế trái = 60 không chia hết cho 7 => Không tồn tại đa thức f(x) có các hệ số nguyên mà f(8!)=2012 và f(9!)=2072

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy

23 tháng 1 2016

Ta có :8!-38308=12

Vậy f(x)=x-38308

Thay x =9!, ta có f(9!)=362880-38308=324572 khác 2072

Vậy đa thức f(x) không tồn tại