Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry mình học lớp 5 nên không trả lời cho bạn được.Nhưng hình nền bạn đặt rất đẹp và dễ thương.
a, Ta có ; X = x1 n1+x2 n2+ x3+ n3+...+xk nk
N
<=> qX = q (x1 n1+x2 n2 + x3 n3 +...+ xk nk )
N
= ( qx1)n1+(qx2)n2 +( qx3)n3+...+(qxk)nk
N
Giải
Ta có :
\(\overline{X}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)
Với N = \(n_1+n_2+....n_k.\)
a) \(=\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}=\overline{X+a.}\)
Thật vậy :
\(\overline{X}+a=\frac{x_1n_1+x_2n_2+...+x_kn_k}{N}+a=\frac{x_1n_1+x_2n_2+...+x_kk_k+aN}{N}\)
\(=\frac{x_1n_1+x_2n_2+...+x_k+n_k+an_1+an_2+...+an_k}{N}\)
\(=\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}\)
Trường hợp trừ cũng chứng minh như cộng
Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
X¯¯¯¯=x1.n1+x2.n2+...+xk.nkNX¯=x1.n1+x2.n2+...+xk.nkN
Số trung bình cộng sau khi cộng thêm a là:
X′¯¯¯¯¯¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkNX′¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkN
X′¯¯¯¯¯¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkNX′¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkN
=(x1.n1+x2.n2+...+xk.nk)N+a.NN=(x1.n1+x2.n2+...+xk.nk)N+a.NN
(vì tổng các tần số n1+n2+...+nk=Nn1+n2+...+nk=N)
Nên X′¯¯¯¯¯¯=X¯¯¯¯+aX′¯=X¯+a
Vậy số trung bình cộng cũng được cộng thêm với số đó. (đpcm)