K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Giả sử a,b,c,d,e,g đồng thời là lẻ

1 số chính phương lẻ khi chia 8 chỉ dư 1

=>a2+b2+c2+d2+e2 chia 8 dư 5

Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra

Vậy 6 số đã cho ko thể đồng thời là số lẻ

4 tháng 4 2017

Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương

=>ko tồn tại a,b,c,d,e,g lẻ
 

18 tháng 12 2018

Giả sử cả 6 số a,b,c,d,e,g đều đồng thời là các số lẻ.

Áp dụng bài toán phụ:1 số chính phương lẻ khi chia 8 chỉ dư 1

=>a2+b2+c2+d2+e2 chia cho 8 dư 5

Mà g2 chia 8 dư 1

Kết hợp 2 điều trên =>Vô lí

=>5 số trên không đồng thời là số lẻ

Vậy ...

23 tháng 11 2016
  • = hợp số
  • vì bình phương của abcdeg bằng 2 
  • mà 2 lại là hợp số
  • nên abcdeg là hợp số 
23 tháng 11 2016

hợp số nha bạn

k nha

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

30 tháng 3 2017

là số nguyên tố

22 tháng 2 2018

la so nguyen to tk cho minh di

17 tháng 3 2016

theo mình là hợp số 

5 tháng 7 2016

Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)