Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\in P\Leftrightarrow a-b=1;va:a+b\in P\)
Nen \(a^2-b^2=\left(a+b\right)\left(a-b\right)=\left(a+b\right).1=a+b..\)
Gọi UCLN ( a, a + b ) = d ( d \(\in\)N* )
Ta có :
a \(⋮\)d
a + b \(⋮\)d
Từ đó ta có :
a + b - a \(⋮\)d
=> b\(⋮\)d
Mà a\(⋮\)d ; b\(⋮\)d => d \(\in\)ƯC ( a , b )
Mặt khác ƯCLN ( a , b ) = 1 nên 1 \(⋮\)d
Suy ra d \(\in\)Ư ( 1 ) = { 1 } hay d = 1
Vậy nếu a, b nguyên tố cùng nhau thì a và a + b nguyên tố cùng nhau .
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.