Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
ta co:
2bd =c[b+d]= cd+cb va a+c=2b nen ta co;
2bd =[a+c]d=ad+cd=cd+cb
hayad =bc =>dieu phai chung minh
Ta có: a+c = 2b
mà 2b.d= c(b+d)
=> (a+c).d=c(b+d)
=> ad +cd = bc+cd
=> ad =bc
=>\(\frac{a}{b}=\frac{c}{d}\)
Thay 2b vào đẳng thức bên dưới ta có :
( a + c )d = c( b + d )
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a}{d}=\frac{c}{d}\)( tính chất của dãy t/s bằng nhau )
=> đpcm
giải
Ta có : \(\hept{\begin{cases}2bd=c\left(b+d\right)\\a+c=2b\end{cases}}\)
\(\Rightarrow d\left(a+c\right)=c.\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Chúc bạn hoc tốt !!!
Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)
Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\)
Đề bài là cm à?
Ta có:
2bd=c(b+d)
=>(a+c)d=c(b+d)
=>ad+cd=cb+cd
=>ad+cd-cd=bc
=>ad=bc
=>a/b=c/d(đpcm)
a) Ta có \(\hept{\begin{cases}a+c=2b\left(1\right)\\2bd=c\left(b+d\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta có : \(\left(a+c\right).d=c\left(b+d\right)\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
b) Ta có : a2 = bc
=> \(\frac{a}{b}=\frac{a}{c}\)
Đặt \(\frac{a}{b}=\frac{a}{c}=k\)
=> a = bk = ck
Khi đó : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+a}{a-c}=\frac{c+ck}{ck-c}=\frac{c\left(1+k\right)}{c\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+a}{a-c}\left(\text{đpcm}\right)\)
\(2b.d=c\left(b+d\right)\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{24}{85}\)