K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$

18 tháng 2 2020

Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))

a) 3x + 5y ⋮ 7

=> 5.(3x + 5y) ⋮ 7

<=> 15x + 25y ⋮ 7 (1)

Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)

Lấy (1) trừ (2), ta có:

(15x + 25y) - (14x + 21y) ⋮ 7

<=> x + 4y ⋮ 7

Điều ngược lại đương nhiên là đúng =)))

Chúc em học tốt !!!

18 tháng 2 2020

cảm ơn nhé

6 tháng 3 2021

@Hồ Đức Việt chép mạng cẩn thận nhá

6 tháng 3 2021

6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31

x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31

12 tháng 2 2018

đề sai rồi bn! 

phải là 6x + 11y chứ.

xem lại đề.

12 tháng 2 2018

ai giải nhanh mình k cho        thank

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31

30 tháng 6 2016

6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31

x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31

30 tháng 6 2016

Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)

Mặt khác: \(6x+11y⋮31\)

=> \(6\left(x+7y\right)⋮31\)(1)

Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)

Từ (1)(2)=> x+7y chia hết cho 11(đpcm)

7 tháng 3 2020

có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y

6x + 11y chia hết cho 31; 31y chia hết cho 31

=> 6(x + 7y) chia hết cho 31

=> x + 7y chia hết cho 31  

làm ngược lại 

7 tháng 3 2020

Gọi  A =  6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y

=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31

23 tháng 10 2016

Đặt A = 6x + 11y; B = x + 7y

Xét hiệu: 6B - A = 6.(x + 7y) - (6x + 11y)

                        = 6x + 42y - 6x - 11y

                        = 31y

Do A chia hết cho 31; 31y chia hết cho 31

=> 6B chia hết cho 31

Mà (6;31)=1 => B chia hết cho 31 hay x + 7y chia hết cho 31 (đpcm)

3 tháng 1 2018

Câu này bạn làm được chưa bạn có nhớ mình là ai không nếu chưa giải được mình giải cho