K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

15 tháng 9 2016

n3 - 13n

= n3 - n - 12n

= n(n2 - 1) - 12n

= n(n - 1)(n + 1) - 12n

n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)

- 12n chia hết cho 6

Vậy n3 - 13n chia hết cho 6 (đpcm)

15 tháng 9 2016

n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n 
Ta có n(n-1)(n=1) là tích 3 số nguyên ( hoặc tự nhiên j cug dc) nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau.

Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6

25 tháng 1 2019

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)

\(=3n^3+9n^2+15n+9\)

\(=3n^2\left(n+1\right)+6n\left(n+1\right)+9\left(n+1\right)\)

\(=3\left(n+1\right)\left(n^2+2n+3\right)\)

\(=3\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Do \(n,n+1,n+2\) là 3 số tự nhiên liên tiếp

\(\Rightarrow3n\left(n+1\right)\left(n+2\right)⋮9\)

\(\Rightarrow A=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)⋮9\left(đpcm\right)\)

P/s : Bài này bạn có thể sử dụng phương pháp quy nạp

làm như vậy sẽ nhanh hơn

2 tháng 9 2017

a)Ta có : 

\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)

* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6

\(\Rightarrow\) n\(^3\)-13n chia hết cho 6

b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)

Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)

 Mà (3;5;8) =1  (4)

Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)

                                 => A⋮120

c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

2 tháng 9 2017

Đề bài c sai r nha bn

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

\(B=a^{2016}-a^{2012}=a^{2012}(a^4-1)=a^{2012}(a^2-1)(a^2+1)\)

\(=a^{2011}a(a-1)(a+1)(a^2+1)\)

Ta thấy $a,a-1,a+1$ là 3 số nguyên liên tiếp. Do đó trong 3 số luôn tồn tại ít nhất một số chẵn và một số chia hết cho $3$

$\Rightarrow a(a-1)(a+1)\vdots 2$ và $a(a-1)(a+1)\vdots 3$

Mà $(2,3)=1$ nên $a(a-1)(a+1)\vdots 6$

$\Rightarrow B\vdots 6$ (1)

Mặt khác:

Ta biết một số chính phương khi chia cho $5$ có thể có dư là $0,1,4$

Nếu $a^2\vdots 5$ thì \(B=a^{2012}(a^4-1)=a^2.a^{2010}(a^4-1)\vdots 5\)

Nếu $a^2$ chia $5$ dư $1$: \(\Rightarrow a^2-1\vdots 5\)

\(\Rightarrow B=a^{2012}(a^2-1)(a^2+1)\vdots 5\)

Nếu $a^2$ chia $5$ dư $4$ $\Rightarrow a^2+1\vdots 5$

$\Rightarrow B=a^{2012}(a^2-1)(a^2+1)\vdots 5$

Vậy tóm lại $B\vdots 5$ (2)

Từ $(1);(2)$ mà $(5,6)=1$ nên $B\vdots (5.6)$ hay $B\vdots 30$ (đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

18 tháng 10 2019

Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)

\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1

5 tháng 8 2019

a)

Ta có: 13n+1 - 13n

= 13n . 13 - 13n

= 13n (13 - 1)

= 13n . 12 \(⋮\) 12

Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n

b)

Ta có: n3 - n = n (n2 - 1)

= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)

5 tháng 8 2019

Cảm ơn bạn nhiều <3