Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Vẽ các trung tuyến BN, CE lần lượt tại B và C. Gọi G là trọng tâm của \(\Delta ABC\)..Nối MN
Áp dụng BĐT tam giác vào \(\Delta AMN\), ta được:
\(AM< AN+NM\)(1)
Mà \(AN=\frac{1}{2}AC\)(Do BN là trung tuyến ứng với cạnh AC) (2)
và \(MN=\frac{1}{2}AB\)(Do MN là đường trung bình ứng với cạnh \(AB\)của \(\Delta ABC\)) (3)
Từ (1), (2) và (3) suy ra \(AM< \frac{1}{2}AB+\frac{1}{2}AC\)
hay \(AM< \frac{1}{2}\left(AB+AC\right)\) (đpcm)
Có 3^n+2 - 2^n+2 + 3^n - 2^n
=3^2 * 3^n+3^n-(2^n*2^2+2^n)
=3^n(9+1)-2^n*(4+1)
=3^n*10-2^n*5
Vì 3^n*10 chia hết cho 10; 2^n là số chẵn nên 2^n *5 có tận cùng là 0 nên chia hết cho 10.
Mà hiệu của 2 số chia hết cho 10 là 1 số chia hết cho 10
nên 3^n+2-2^n+2+3^n - 2^n chia hết cho 10
3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2+2n)
=3n(32+1)-2n(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1)chia hết cho 10
Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần