K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

11 tháng 11 2023

2n + 3 = 2n - 2 + 5

= 2(n - 1) + 5

Để (2n + 3) ⋮ (n - 1) thì 5 ⋮ (n - 1)

⇒ n - 1 ∈ Ư(5) = {-5; -1; 1; 5}

⇒ n ∈ {-4; 0; 2; 6}

Mà n T ℕ

⇒ n ∈ {0; 2; 6}

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

27 tháng 4 2020

2. Gọi d là ƯC(3n-1 ; 2n - 1)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\2n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-1\right)⋮d\\3\left(2n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}}\)

=> ( 6n - 3 ) - ( 6n - 2 ) chia hết cho d

=> 6n - 3 - 6n + 2 chia hết cho d

=> ( 6n - 6n ) + ( 2 - 3 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d 

=> 3n - 1 tối giản ( đpcm )

" => ƯCLN(3n - 1 ; 2n - 1) = 1 

=> \(\frac{3n-1}{2n-1}\)tối giản " 

8 tháng 2 2018

Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :

\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)

\(\Leftrightarrow\)\(\left(-1\right)⋮d\)

Suy ra \(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

Do đó \(d\in\left\{1;-1\right\}\)

Vật phân số \(\frac{2n+3}{3n+5}\)tối giản 

14 tháng 2 2016

1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:

*n + 1 chia het cho d

*2n + 3 chia hết cho d

suy ra:

*( n + 1 ) x 2 chia het cho d

*2n + 3 chia hết cho d

suy ra:

*2n + 2 chia hết cho d

*2n + 3 chia hết cho d

suy ra:

*( 2n + 3 ) - (2n + 2 ) chia het cho d

suy ra:

1 chia hết cho d, vì d thuộc N suy ra: d=1

suy ra : UCLN( n + 1; 2n + 3 ) = 1

suy ra : n + 1 trên 2n + 3 toi gian

các câu sau cứ thế mà lm...............

14 tháng 2 2016

làm 1 câu đủ loạn não giờ làm 3 câu chắc vào viện nằm mất

14 tháng 2 2016

khó qua s ban ôi

13 tháng 2 2016

Chứng minh từng cái 1 bạn nhé chứ không phải chứng minh tất đâu