Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + .. + 1/50
Xét vế trái:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) - ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) + (1/2 + 1/4 + 1/6 + ... + 1/50 ) - 2 . ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/49 + 1/50 ) - ( 1 + 1/2 + 1/3 + ... + 1/25 )
= 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50 (1)
Từ (1) => Vế trái = Vế phải
=> Điều phải chứng minh
- HokTot -
Tao có: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(B>1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2004}\right)=1-1+\dfrac{1}{2004}=\dfrac{1}{2004}\left(đpcm\right)\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
a: =>\(-\dfrac{6+x}{2}-\dfrac{3}{2}=2\)
=>-x-6-3=4
=>-x-9=4
=>-x=5
hay x=-5
b: =>(x+1)2=16
=>x+1=4 hoặc x+1=-4
=>x=3 hoặc x=-5
c: \(\Leftrightarrow\left(\dfrac{x-2}{27}-1\right)+\left(\dfrac{x-3}{26}-1\right)+\left(\dfrac{x-4}{25}-1\right)+\left(\dfrac{x-5}{24}-1\right)+\left(\dfrac{x-44}{5}+3\right)=0\)
=>x-29=0
hay x=29
1: \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)
\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)+\dfrac{1}{2}\)
\(=1-1+\dfrac{1}{2}=\dfrac{1}{2}\)
2: \(12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=12:\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2\)
\(=12:\left(-\dfrac{1}{12}\right)^2=12:\dfrac{1}{144}=12\cdot144=1368\)
3: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(0,8-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{17}{12}\cdot\left(\dfrac{16-15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
4: \(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\dfrac{3}{5}\)
\(=\dfrac{5}{3}\cdot\left(-16-\dfrac{2}{7}\right)+\dfrac{5}{3}\cdot\left(28+\dfrac{2}{7}\right)\)
\(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)\)
\(=12\cdot\dfrac{5}{3}=20\)
5: \(\left(2^2:\dfrac{4}{3}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\dfrac{5}{2}\cdot\dfrac{6}{5}-17=3-17=-14\)
6: \(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left(\dfrac{1}{3}\right)^{50}\cdot\left(-1\right)\cdot3^{50}-\dfrac{2}{3\cdot4}\)
\(=-1-\dfrac{2}{12}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
chắc h có mấy thành cay r nên ko làm bn lên mạng tải phẩn mêm có cánh iair đó :D
Vì \(\dfrac{1}{11}>\dfrac{1}{18}>\dfrac{1}{21}>\dfrac{1}{24}>\dfrac{1}{27}>\dfrac{1}{29}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}>\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}\)\(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{1}{11}.7=\dfrac{7}{11}\)
Ta có:
\(\dfrac{7}{11}=\dfrac{7.5}{11.5}=\dfrac{35}{55};\dfrac{4}{5}=\dfrac{4.11}{5.11}=\dfrac{44}{55}\)
\(Vì\) \(\dfrac{44}{55}>\dfrac{35}{55}\)
\(\Rightarrow\dfrac{4}{5}>\dfrac{7}{11}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< \dfrac{4}{5}\left(đpcm\right)\)
Ta thấy :
\(\dfrac{1}{4}+\dfrac{1}{11}< \dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{18}+\dfrac{1}{21}< \dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{24}+\dfrac{1}{27}< \dfrac{1}{24}+\dfrac{1}{24}=\dfrac{1}{12}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{29}< \dfrac{1}{20}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< 1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(\Rightarrow dpcm\)