Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(n+3,2n+5) = d
=> n+3 chia hết cho d, 2n+5 chia hết cho d
=> 2(n+3) chia hết cho d, 2n+5 chia hết cho d
=> 2n+6 chia hết cho d,2n+5 chia hết cho d
=> (2n+6)-(2n+5) chia hết cho d
=> 1 chia hết cho d =>đpcm.
Gọi d \(\in\) ƯC( 2n + 5;n + 2)
\(\text{⇒2n+5−2(n+2)}\) chia hết cho dd
hay 1chia hết cho d
\(\text{⇒d=1}\)
vậy 2n+5 và n+2 nguyên tố cùng nhau
Gọi d ∈∈ ƯC( 2n + 5;n + 2)
⇒2n+5−2(n+2)⇒2n+5−2(n+2) chia hết cho dd
hay 1chia hết cho d
⇒d=1⇒d=1
vậy 2n+5 và n+2 nguyên tố cùng nhau
Gọi 2 số tự nhiên liên tiếp là n và n+1
Gọi d là UCLN (n , n+1 ) [ d thuộc N* ]
Ta có n : d => [( n +1 )-n ] : d
n+1 : d
=> 1 : d => d = 1
UCLN ( n , n + 1 ) =1
vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
tich nha
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC﴾n,n+1﴿=a
Ta có: n chia hết cho a﴾1﴿
n+1 chia hết cho a﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ ta được: n+1‐n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC﴾n,n+1﴿=1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
gọi d\(\in\)ƯC(5n+7;7n+10) thì \(\text{5(7n+10)−7(5n+7)}\) chia hết cho dd
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d = 1
do đó 7n+10 và 5n+7 nguyên tố cùng nhau
gọi d∈∈ƯC(5n+7;7n+10) thì 5(7n+10)−7(5n+7)5(7n+10)−7(5n+7) chia hết cho dd
⇒⇒1 chia hết cho d
⇒⇒d = 1
do đó 7n+10 và 5n+7 nguyên tố cùng nhau
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Đáp án C
* log 1 16 x xác định khi x > 0
* log 16 log 1 16 x xác định khi log 1 16 x > 0 = log 1 16 1 ⇔ 0 < x < 1
* log 1 4 log 16 log 1 16 x xác định khi
log 16 log 1 16 x > 0 = log 16 1 ⇒ log 1 16 x > 1 = log 1 16 1 16 ⇒ x < 1 16
* log 4 log 1 4 log 16 log 1 16 x xác định khi
log 1 4 log 16 log 1 16 x > 0 = log 1 4 1 ⇒ log 16 log 1 16 x < 1 = log 16 16
⇒ log 1 16 x < 16 = log 1 16 1 16 16 ⇒ x > 1 16 16
* log 1 2 log 4 log 1 4 log 16 log 1 16 x xác định khi
log 4 log 1 4 log 16 log 1 16 x > 0 = log 4 1
⇒ log 1 4 log 16 log 1 16 x > 1 = log 1 4 1 4 ⇒ log 16 log 1 16 x < 1 4 = log 16 2
⇒ log 1 16 x < 2 = log 1 16 1 16 2 ⇒ x > 1 16 2
Kết hợp tất cả các điều kiện ta được
1 16 2 < x < 1 16 ⇒ D = 1 16 2 ; 1 16 ⇒ b − a = 15 256 ⇒ m + n = 271
Gọi \(d\inƯ\left(n+15;n+72\right)\) ( \(d\in N,d\ne0\))
\(\Rightarrow n+15⋮d\)
\(n+72⋮d\)
\(\Rightarrow\left(n+72\right)-\left(n+15\right)⋮d\)
\(\Rightarrow57⋮d\)
\(\Rightarrow d=1;3;19;57\) để n + 15 và n + 72 là hai số nguyên tố cùng nhau thì n khác dạng 19k + 15
Vậy có vô số giá trị n
tại sao n khác dạng 19k+15 vậy