Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chia hết cho 10 thì tận cùng phải bằng 0
Ta có
5+4-1=0
=> 175+244-1321 chia hết cho 10
Quy tắc đoán một số tự nhiên chia hết cho 11 là hiệu của tổng các số ở vị trí số lẻ và tổng các số ở vị trí số chẵn của nó có thể chia hết cho 11.
Công thức tổng quát _____
A = a b c d chia hết cho 11 khi [(a + c) – (b + d) ] chia hết 11
Ví dụ tổng các số ở vị trí số lẻ là 9 + 8 + 6 = 23, tổng các số ở vị trí số chẵn là 2 + 8 + 2 = 12, hiệu của hai tổng này bằng 11, có thể chia hết cho 11 cho nên số 268829 có thể chia hết cho 11.
Ví dụ khác: 1257643, vì (3 + 6 + 5 + 1) – (2 + 7 + 4) = 2 cho nên số 1257643 không thể chia hết cho 11.
Cách chứng minh vẫn giống với quy tắc trong 3 và 4: dùng ký hiệu trong (3).
A = = [(10 + 1) a1 + (102 -1)a2 + (103 + 1)a3 + (104 – 1)a4 +..] + (a0 + a2 +..) - (a1 + a3 +...)
Số trong hoặc đơn phía trước là bội số của 11, do vậy muốn phán đoán xem a có phải là bội số của 11 không thì chỉ cần xem số trong hoặc đơn phía sau có phải là bội số của 11 hay không.
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
=> Nếu số đó chia 9 dư k
=> Tổng các chữ số chia 9 dư k
Vậy hiệu của chúng có số dư khi chia cho 9 là: k - k = 0
Vậy chia hết cho 9
Lời giải:
Gọi số tổng quát có dạng \(\overline{a_1a_2a_3....a_n}\)
Xét hiệu của số đó và tổng các chữ số của nó:
\(\overline{a_1a_2a_3....a_n}-(a_1+a_2+a_3+....+a_n)\\ =(a_1.10^n+a_2.10^{n-1}+.....+a_n)- (a_1+a_2+...+a_n)\\ =a_1(10^n-1)+a_2(10^{n-1}-1)+...+a_{n-1}(10-1)\)
\(=a_1.\underbrace{999...9}_{n}+a_2.\underbrace{999...9}_{n-1}+....+a_{n-1}.9\vdots 9\)
Gọi số đó là 10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... ta co :
10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... - ( X1+X2+....+Xn-1+ Xn)=
=Xn(10^n-1)+Xn-1[10^(n-1)-1]+.....+X2(...
ta thấy rõ rằng tất cả các số hạng của tổng này đều chia hết cho 9
Chứng tỏ : Hiệu của một số và tổng các chữ số của nó chia hết cho 9
Bài chêp đủ phải là có n chữ số 1
cộng n chữ số 1 thì =n chứng tỏ A=8n+n=9n
đương nhiên nó chia hết cho 9.
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath