K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

a/b=c/d=a+c/b+d 

=>a/b=a+c/b+d (đpcm)

4 tháng 2 2016

Cho 4 nữa cho tròn đi

2 tháng 2 2019

tu ve hinh : 

xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)

AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)

=> tamgiac AMB = tamgiac AMC (c - g - c)           (1)

b, (1) => goc AMB = goc AMC 

goc AMB + goc AMC = 180 (ke bu)

=> goc AMB = 90 

=> AM | BC (dn)

2 tháng 2 2019

 MINH NHO CAC BAN GIUP MINH PHAN d MA

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

c: Xét ΔABI và ΔACI có

AB=AC
\(\widehat{BAI}=\widehat{CAI}\)

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)

hay CI\(\perp\)CA

26 tháng 10 2017

a. Ta có : ( a + b )( c - d ) = ac-ad+bc-bd (1)

( a - b )( c + d ) = ac+ad-bc+bd (2)

Từ giả thuyết : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\) (3)

Từ (1) , ( 2) và ( 3) \(\Rightarrow\)( a + b )( c - d) = ( a - b)( c + d )

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

12 tháng 7 2016

Đk d,b khác 0 , a khác c ,b khác d.

Vì a/b = c/d suy ra c =a.k và d=b.k suy ra a-c/b-d =a-ak/b-bk =a(1-k)/b(1-k)=a/b (ĐPCM) 

3 tháng 9 2016

a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d

3 tháng 9 2016

a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(ad< bc\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)