K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Chứng minh:

Biến đổi tương đương, ta có:
\(a^4+b^4\ge a^3b+ab^3\Rightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)\left(a-b\right)\ge0\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)^2\ge0\)

\(\Rightarrow\left(a^2-2a\frac{b}{2}+\left(\frac{b}{2}\right)^2+\frac{3}{4}b^2\right)\left(a-b\right)^2\ge0\)(luôn đúng)

\(\Rightarrow\)đpcm

18 tháng 4 2019

ủa mà bạn ơi, Hằng đẳng thức a^3-b^3 là (a-b)(a^2+ab+b^2) mà

bạn bị lộn HĐT nên kết quả ra sai r kìa

mik nghĩ v, bạn xem lại nha

30 tháng 4 2020

Ai giúp giùm tớ tớ cảm mơn huhu!!!

30 tháng 4 2020

Bài làm

Ta có: a4 + b4 > a3b + ab3 

=> a4 + b4 - a3b - ab3 > 0

=> a3( a - b ) + b3( a - b ) > 0

=> ( a3 + b3 )( a - b ) > 0

Ta xét ( a + b )( a2 - ab + b2 )( a - b ) > 0

=> ( a2 - b2 )( a2 - ab + b2 ) > 0

<=> \(\orbr{\begin{cases}a^2-b^2=0\\a^2-ab+b^2=0\end{cases}}\)                    

chứng minh tích trên lớn hơn 0 nx là ok. 

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

12 tháng 5 2020

hello

14 tháng 4 2019

a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=1\)

b) \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

\("="\Leftrightarrow a=b\)

3 tháng 5 2016

a4+b4 >= a3b+ab3

<=> chuyển vế phải qua

<=> a3(a-b)+b3(a-b)>=0

<=> (a-b)(a3-b3)>=0

<=> (a-b)(a-b)(a2+ab+b2)>=0

<=> (a-b)2(a2+ab+b2)>=0

vì (a-b)2 luôn >= 0

a2ab+b2>=0 (luôn luôn)

3 tháng 5 2016

<=> a^4 + b^4 - a^3b - ab^3 >= 0

<=> a^3( a -b) + b^3(a -b) >= 0

<=> (a -b)(a^3 + b^3) >= 0

<=> (a -b)^2 (a^2 + ab + b^2) >= 0 ; (luôn đúng vs mọi a,b)

=> Đpcm

2 tháng 5 2018

Xét \(a^5+b^5-a^3b^2-a^2b^3\)

\(=a^3\left(a+b\right)\left(a-b\right)-b^3\left(b-c\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a^4-a^3b-b^4-ab^3\right)=\left(a+b\right)a^4+\left(a^4+2a^3b+b^2a^2-2a^2a^2-2ab^3-a^3b+a^2a^2-2ab^3+b^4\right)\)\(=\left(a+b\right)\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đpcm)

P/S cchs hơi chậm nhưng dừng chửi nhá

2 tháng 5 2018

Đúng là hơi chậmoaoaNguyễn Hải Dương