K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Ta có :2^6=64

6^101=...6(6 mũ mấy đều có tận cx là 6)

Thay vào ta có :64x...6+1

=...4+1

=...5\(\Rightarrow\)dãy trên là hợp số vì só nguyên tố ko có tận cx là 5

31 tháng 7 2019

S=[2+2^2+2^3]+[2^4+2^5+2^6]+...+[2^2008+2^2009+2^2010] CHIA HẾT CHO 14

 SUY RA S CHIA HẾT CHO 14  

GIỮ LỜI NHA

31 tháng 7 2019

S = 2 + 22 + 23 + ... + 22010

    = (2 + 22 + 23) + (24 + 25 + 26) + ... + (22008 + 22009 + 22010)

    = 2(1 + 2 + 22) + 24(1 + 2 + 22) + ... + 22008(1 + 2 + 22)

    = 2.7 + 24.7 + ... + 22008. 7

    = 14 + 23.14 + ... + 22007.14

    = 14(1 + 23 + ... + 22007\(⋮\)14

Gọi ƯCLN (3n+2;4n+3)=d

=> (4n+3) chia hết cho d => 3(4n+3) chia hết cho d => 12n+9 chia hết cho d

=> (3n+2) chia hết cho d => 4(3n+2) chia hết cho d => 12n+8 chia hết cho d

=> (12n+9) - (12n+8) chia hết cho d

=> 1 chia hết cho d

=> d\(\in\)Ư(1)

Mà d lớn nhất

=> d=1

=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau (đpcm)

Bài này mkik mới học hồi sáng, bạn kia làm đúng đó,  bạn ấy đi(^_^)

18 tháng 3 2018

Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)

\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)

\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)

\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)

\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)

\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)

\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)

18 tháng 3 2018

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)

\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)

\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)

\(4A=3-\frac{206}{3^{101}}< 3\)

=>\(4A< 3\)

\(\Rightarrow A< \frac{3}{4}\)

23 tháng 12 2015

A=64.6101 +1 =64.(....6) +1 = (...4) + 1 = (....5) chia hết cho 5

=> A là hợp số