Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự
vì căn 2 là số vô tỉ
vì cắn 3 là số vô tỉ
và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ
- Giả sử rằng là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
- Như vậy có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
- Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
- Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
- Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
- Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
- Thay (6) vào (3) ta có: (2k)2 = 2b2 4k2 = 2b2 2k2 = b2.
- Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
- Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
- Giả sử rằng là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
- Như vậy có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
- Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
- Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
- Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
- Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
- Thay (6) vào (3) ta có: (2k)2 = 2b2 4k2 = 2b2 2k2 = b2.
- Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
- Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
tích mik nha
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1
\(\implies\) \(b\sqrt{2}=a\)
\(\implies\) \(b^2.2=a^2\)
\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(a\) chia hết cho \(2\)
\(\implies\) \(a^2\) chia hết cho \(4\)
\(\implies\) \(b^2.2\) chia hết cho \(4\)
\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(b\) chia hết cho \(2\)
\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)
\( \implies\) Điều giả sai
\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )
b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )
\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ
Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ
\( \implies\) Mâu thuẫn
\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )
cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa