Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Vì số chính phương chia 3 dư 1 hoặc 0 (tự c/m)
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0); (0;1); (1;0) hoặc (1;1)
Vì a2 + b2 chia hết 3 nên ta nhận cặp (0;0)
=> a,b đều chia hết 3 (đpcm)
Bài giải
Theo bài ra, ta có: a+b chia hết cho 11 và a^2+b^2 chia hết cho 11
a^2+b^2 = a.a+b.b chia hết cho 11 => a chia hết cho 11, b chia hết cho 11 => a^3+a^3=a.a.a+b.b.b cũng chia hết cho 11
K CHO MÌNH NHÉ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!