Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
k cho minh nha bạn
c) =(1+2)+(2^2+2^3)+(2^4+2^5)+...+(2^119+2^200)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+...+2^119.(1+2)
=1.3+2^2.3+2^4+...+2^199.3 hiển nhiên sẽ chia hết cho 3
Câu d làm tương tự nhưng bạn phải giép 4 lũy thừa để được 15
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Ta có:
A=2+22+23+...+2120
A=(2+22+23+24+25)+...+(2116+2117+2118+2119+2120)
A=2.(1+2+22+23+24)+...+2116.(1+2+22+23+24)
A=2.63+...+2116.63
A=63.(2+...+2116)
A=21.3.(2+...+2116)\(⋮\)21
Vậy A chia hết cho 21
\(A=2^1+2^2+2^3+2^4+....+2^{119}+2^{120}\)
\(=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.....+2^{115}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+....+2^{115}.63\)
\(=63\left(2+....+2^{115}\right)\)
\(=3.21.\left(2+...+2^{115}\right)\)
\(\Rightarrow A⋮21\)
\(A=7+7^2+7^3+...+7^{120}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{118}.57\)
\(A=57\left(7+7^4+...+7^{118}\right)\)
\(\Rightarrow A⋮57\)
A=2+2^2+2^3+...+2^120
A=(2+2^2+2^3)+(2^4+2^5+2^6)...+(2^118+2^119+2^120)
A=2.(1+2+2^2)+2^4(1+2+2^2)+2^118(1+2+2^2)
A=2.7+2^4.7+...+2^118.7
Ta có A=2.7+2^4.7+...+2^118.7 chia hết cho 7
=>A=2+2^2+2^3+...+2^120 chia hết cho 7
A=2+2^2+...+2^120
=(2+2^2+2^3+2^4+2^5+2^6)+(2^7+2^8+2^9+2^10+2^11+2^12)+.....+(2^120+2^119+2^118+2^117+2^116+2^115)
=2(1+2+2^2+2^3+2^4+2^5)+2^7(1+2+2^2+2^3+2^4+2^5)+.....+2^115(1+2+2^2+2^3+2^4+2^5)
=2*63+2^7*63+...+2^115*63
=63(2+2^7+...+2^115) Vì 63 chia hết cho 7=>63(2+2^7+..+2^115) chia hết cho 7
=>A chia hết cho 7