Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)
Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2
+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
Vì \(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
Lời giải:
$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.
Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$
$=5^{6k}.25+5.5^{3k}+1$
Vì $5^3\equiv 1\pmod {31}$
$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Nếu $n=3k+2$ thì:
$A=5^{2(3k+2)}+5^{3k+2}+1$
$=5^{6k}.5^4+5^{3k}.5^2+1$
$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Từ 2 TH suy ra $A\vdots 31$ (đpcm)
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
\(M = 3^5 + 3^6 + 3^7\)
\(M = 3^5( 3^0 + 3^1 + 3^2 )\)
\(M = 3^5 ( 1 + 3 + 3^2 )\)
\(M=3^5.13⋮13\)
Ta sẽ chứng minh : 11n+1 + 122n-1 (1) với mọi n \(\inℕ^∗\)bằng phương pháp quy nạp
Với n = 1 , ta có : 11n+1 + 122n-1 = 112 + 12 = 133
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k \(\inℕ^∗\), ta sẽ Chứng minh nó cũng đúng khi n = k + 1
Ta có :
11(k+1) + 1 + 122(k+1) - 1 = 11.(11k+1 + 122k-1) + 122k-1.(122 - 11)
= 11 . (11k+1 + 122k-1) + 133 . 122k -1 (2)
Mà 11k+1 + 122k-1 \(⋮\)133 nên từ (2) ta suy ra được : 11(k+1)+1 + 122(k+1) - 1 \(⋮\)133
Hay (1) đúng với n = k + 1
Từ các chứng minh trên => (1) đúng với mọi n \(\inℕ^∗\)
\(11^{n+1}+12^{2n-1}=11^n\cdot11+12\cdot12^{2n-2}=11^n\cdot11+12\cdot144^{n-1}\)
\(11^n\cdot11+\left(133-121\right)\cdot144^{n-1}=133\cdot144^{n-1}-121\cdot144^{n-1}+11^n\cdot11\)
\(=133\cdot144^{n-1}-144^{n-1}\cdot121+11^{n-1}\cdot121\)
\(=133\cdot144^{n-1}-121\left(144^{n-1}-11^{n-1}\right)\)
\(=133\cdot144^{n-1}-121\left(144-11\right)\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)
\(=133\cdot144^{n-1}-121\cdot133\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)
\(=133\left(144^{n-1}-121\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\right)⋮133\)
\(\Rightarrow11^{n+1}+12^{2n-1}⋮133\)(đpcm)
\(M=3^5+3^6+3^7\)
\(=3^5\left(1+3+3^2\right)=3^5.13⋮13\)
Bài này mà bạn bảo của lớp 9 á
1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)
Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)
Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)
b)Hình như đề sai
bài này dùng đồng dư nha bạn
mình nghĩ bạn chưa học đâu
thật ra mình cũng chưa học nhung nếu bạn thật sự tò mò hãy tra mạng nhé