K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

bài này dùng đồng dư nha bạn

mình nghĩ bạn chưa học đâu

thật ra mình cũng chưa học nhung nếu bạn thật sự tò mò hãy tra mạng nhé

27 tháng 6 2018

Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)

Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2

+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

\(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

27 tháng 6 2018

Cmtt

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.

Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$

$=5^{6k}.25+5.5^{3k}+1$

Vì $5^3\equiv 1\pmod {31}$

$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Nếu $n=3k+2$ thì:

$A=5^{2(3k+2)}+5^{3k+2}+1$

$=5^{6k}.5^4+5^{3k}.5^2+1$

$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Từ 2 TH suy ra $A\vdots 31$ (đpcm)

Ta có: A=n(n+1)(2n+1)

\(=n\left(n+1\right)\left(2n+2-1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n\left(n+1\right)\left(n+2\right)⋮6\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\)

\(\Leftrightarrow A⋮6\)

6 tháng 8 2021

bạn giải thk tý phân tích dc ko

17 tháng 10 2018

\(M = 3^5 + 3^6 + 3^7\)

\(M = 3^5( 3^0 + 3^1 + 3^2 )\)

\(M = 3^5 ( 1 + 3 + 3^2 )\)

\(M=3^5.13⋮13\)

25 tháng 6 2018

Ta sẽ chứng minh  : 11n+1 + 122n-1 (1) với mọi n \(\inℕ^∗\)bằng phương pháp quy nạp 

Với n = 1 , ta có : 11n+1 + 122n-1 = 112 + 12 = 133 

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k \(\inℕ^∗\), ta sẽ Chứng minh nó cũng đúng khi n = k + 1 

Ta có : 

11(k+1) + 1 + 122(k+1) - 1 = 11.(11k+1 + 122k-1) + 122k-1.(122 - 11) 

                                  = 11 . (11k+1 + 122k-1) + 133 . 122k -1 (2) 

Mà 11k+1 + 122k-1 \(⋮\)133 nên từ (2) ta suy ra được : 11(k+1)+1 + 122(k+1) - 1 \(⋮\)133 

Hay (1) đúng với n = k + 1 

Từ các chứng minh trên => (1) đúng với mọi n \(\inℕ^∗\)

25 tháng 6 2018

\(11^{n+1}+12^{2n-1}=11^n\cdot11+12\cdot12^{2n-2}=11^n\cdot11+12\cdot144^{n-1}\)

\(11^n\cdot11+\left(133-121\right)\cdot144^{n-1}=133\cdot144^{n-1}-121\cdot144^{n-1}+11^n\cdot11\)

\(=133\cdot144^{n-1}-144^{n-1}\cdot121+11^{n-1}\cdot121\)

\(=133\cdot144^{n-1}-121\left(144^{n-1}-11^{n-1}\right)\)

\(=133\cdot144^{n-1}-121\left(144-11\right)\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\cdot144^{n-1}-121\cdot133\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\left(144^{n-1}-121\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\right)⋮133\)

\(\Rightarrow11^{n+1}+12^{2n-1}⋮133\)(đpcm)

17 tháng 10 2018

\(M=3^5\left(1+3+3^2\right)=3^5.13⋮13\left(đccm\right)\)

17 tháng 10 2018

\(M=3^5+3^6+3^7\)

\(=3^5\left(1+3+3^2\right)=3^5.13⋮13\)

Bài này mà bạn bảo của lớp 9 á

23 tháng 2 2019

1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)

Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)

Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)

b)Hình như đề sai

24 tháng 2 2019

b) Không đâu bạn, đề đúng