Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
gọi ước chung lớn nhất của 2n+1 và 3n+1 là d (d thuộc N*)
=> 2n+1 chia hết cho d (1) , 3n+1 chia hết cho d (2)
Từ (1) => 3.(2n+1) chia hết cho d => 6n+3 chia hết cho d (3)
Từ (2) => 2( 3n+1) chia hết cho d => 6n+2 chia hết cho d (4)
Từ (3) và (4) =>( 6n+3) -(6n+2) chia hết cho d
=> 1chia hết cho d (5)
Mà d thuộc N* (6)
Từ (5) và (6) => d=1
Vậy ƯCLN ( 2n+1,3n+1) =1
=> ĐCCM
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow n^2+1⋮d\)
Mà \(n^3+2n⋮d\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)
\(\Leftrightarrow n⋮d\)
Mà \(n^2+1⋮d\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản với mọi n
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)
\(\Rightarrow n^2+1⋮d\)
Mà n3 + 2n \(⋮\) d
\(\Rightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)
\(\Rightarrow n⋮d\)
Mà n2 + 1 \(⋮\) d
\(\Rightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
Vì \(d\in N;1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\)
Vậy phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản \(\forall n\in N\) => đpcm
Dặt d =(A=15n2+8n+6;B=30n2+21n+13)
=> A;B cùng chia hết cho d
B-2A=30n2+21n+13- 30n2-16n -12 =5n+1 chia hết cho d
=> d =5n+1 hoặc d =1
+d =5n+1; nhưng A không chia hết ch o 5n+1 loại
Vậy d =1
=> Phân thức A/B là tối giản.
Gọi ƯC (3n+4;2n+3)=d
ta có :3n+4 chia hết d
2n+3 chia hết d
=>(2n+3) - (3n+4) chia hết d
=>3x(2n+3) - 2x(3n+4) chia hết d
=>6n+9 - 6n + 8 chia hết d
=>6n-6n + 9 - 8 chia hết d
=>0+1 chia hết d
=>1 chia hết d
=>1=d
vì ƯC (3n+4;2n+3)=1 nên 3n+4/2n+3 là phân số tối giản