Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^2+n+1=n.(n+1)+1
nếu n+1 chia hết cho 9
=> n.(n+1) chia hết cho 9
nhưng n.(n+1)+1 ko chia hết cho 9
=> n.(n+1)+1 ko chia hết cho 9
nếu n chia hết cho 9
=> n^2 chia hết cho 9
nhưng (n+1) ko chia hết cho 9
=> n^2+n+1 ko chia het cho 9
nên bất kì giá trị nào của n thì n^2+n+1 ko chia hết cho 9
a/ \(x^4+2x^3+x^2+x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\)
b/ 72 chia hết 24 nên ta chỉ cần chứng minh \(A=n^3+23n⋮24\)
\(A=n^3+23n=n\left(n^2+23\right)=n\left[n^2-1+24\right]\)
\(=n\left[\left(n-1\right)\left(n+1\right)+24\right]=n\left(n-1\right)\left(n+1\right)+24n\)
\(24n\) hiển nhiên chia hết 24. Xét \(B=n\left(n-1\right)\left(n+1\right)\)
B là tích 3 số nguyên liên tiếp \(\Rightarrow B⋮3\)
n lẻ \(\Rightarrow n=2k+1\Rightarrow B=\left(2k+1\right)2k.\left(2k+2\right)\)
\(B=4k\left(k+1\right)\left(2k+1\right)\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow\) chia hết cho 2 \(\Rightarrow B⋮8\)
Mà 3;8 nguyên tố cùng nhau \(\Rightarrow B⋮24\Rightarrow A⋮24\)
Xét 2 trường hợp
TH1: n chẵn
Mà 4 chẵn
=> n+4 chẵn chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
TH2: n lẻ => n chia hai dư 1
Mà 1 chia 2 dư 1
=> n+1 chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
Vậy với mọi số nguyên dương n thì (n+1)(n+4) chia hết cho 2 (Đpcm)
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có:
P = \(n^4-14n^3+71n^2-154n+120\)
\(=n^4-3n^3-11n^3+33n^2+38n^2-114n-40n+120\)
\(=n^3\left(n-3\right)-11n^2\left(n-3\right)+38n\left(n-3\right)-40\left(n-3\right)\)
\(=\left(n-3\right)\left(n^3-11n^2+38n-40\right)\)
\(=\left(n-3\right)\left(n^3-4n^2-7n^2+28n+10n-40\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-7n+10\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-2n-5n+10\right)\)
\(=\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)\)
Ta có P bằng tích 4 số tự nhiên liên tiếp. Mà tích 4 số tự nhiên liên tiếp chia hết cho 24.
\(=>P⋮24\left(đpcm\right).\)
Cách khác:
B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp
=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau
=> B chia hết cho 2x3x4
Hay B chia hết cho 24.
=>(đpcm).