Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
*Phương trình 1:
A. \(3x+5=2\left(x-1\right)+4\)
Vậy phương trình A là phương trình một ẩn số vì có một ẩn x
*Phương trình 2:
\(y^3-y=2y^2+5\)
Vậy phương trình B là phương trình một ẩn số vì có một ẩn x
*Phương trình 3:
\(4x^2=5y\)
Vậy phương trình C là phương trình có hai ẩn nên không phải là phương trình có một ẩn số
*Phương trình D:
\(\left(5x-1\right)^3=x^3+2x+4\)
Vậy phương trình D là phương tình có một ẩn số là x
Đáp án đúng: C
Họcc tốtt.
a)( 6x - 2)2 ( 5x - 2)2 - 2( 6x - 2 )( 5x - 2 )
=(6x-2)2-2(6x-2)(5x-2)+(5x-2)2
=[(6x-2)-(5x-2)]2
=(6x-2-5x+2)2
=X2
b) ( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1) + ( 9x2 - 6x + 1)
=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+[(3x)2-2.3x.1+12]
=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+(3x+1)2
=[( x2 + 3x + 1)-( 3x + 1)]2
=( x2 + 3x + 1- 3x - 1)2
=(x2)2
=x4
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)