Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh tương đương:
\(\left(\dfrac{a^2+b^2}{a+b}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{b^2+c^2}{b+c}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{c^2+a^2}{c+a}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)\le0\)
\(\Leftrightarrow\dfrac{a^2c+b^2c-c^2a-bc^2}{\left(a+b\right)\left(a+b+c\right)}+\dfrac{b^2a+c^2a-a^2b-ca^2}{\left(b+c\right)\left(a+b+c\right)}+\dfrac{c^2b+a^2b-b^2c-ab^2}{\left(c+a\right)\left(a+b+c\right)}\le0\)
\(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\) (1).
Không mất tính tổng quát giả sử \(a\geq b\geq c\).
Ta có \(\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{c+a}\\ac\left(a-c\right)+bc\left(b-c\right)\ge0\end{matrix}\right.\Rightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{c+a}\);
\(\left\{{}\begin{matrix}\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\\ba\left(b-a\right)+ca\left(c-a\right)\le0\end{matrix}\right.\Rightarrow\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}\le\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{c+a}\).
Từ đó: \(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)+ba\left(b-a\right)+ca\left(c-a\right)+cb\left(c-b\right)+ab\left(a-b\right)}{c+a}=0\).
Do đó (1) đúng hay bđt ban đầu cũng đúng. Đẳng thức xảy ra khi a = b = c.
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^5}{b^2(c+3)}+\frac{b(c+3)}{16}+\frac{ab}{4}\geq \frac{3}{4}a^2\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(A+\frac{5}{16}ab+\frac{3(a+b+c)}{16}\geq \frac{3}{4}(a^2+b^2+c^2)\)
Mà theo BĐT AM-GM dễ thấy \(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow A\geq \frac{7}{16}(a^2+b^2+c^2)-\frac{3}{16}(a+b+c)\)
Áp dụng BĐT AM-GM tiếp:
$a^2+1\geq 2a; b^2+1\geq 2b; c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3\sqrt[3]{abc}=a+b+c+3$
$\Rightarrow a^2+b^2+c^2\geq a+b+c\Rightarrow A\geq \frac{1}{4}(a+b+c)\geq \frac{1}{4}\sqrt[3]{abc}=\frac{3}{4}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Mình vừa sửa lỗi công thức, bạn load lại để xem nhé.
\(\dfrac{a^5}{b^2\left(c+3\right)}+\dfrac{b^2}{4}+\dfrac{a\left(c+3\right)}{16}\ge3\sqrt[3]{\dfrac{a^6b^2\left(c+3\right)}{64b^2\left(c+3\right)}}=\dfrac{3}{4}a^2\)
Tương tự: \(\dfrac{b^5}{c^2\left(a+3\right)}+\dfrac{c^2}{4}+\dfrac{b\left(a+3\right)}{16}\ge\dfrac{3}{4}b^2\)
\(\dfrac{c^5}{a^2\left(b+3\right)}+\dfrac{a^2}{4}+\dfrac{c\left(b+3\right)}{16}\ge\dfrac{3}{4}c^2\)
Cộng vế:
\(A+\dfrac{a^2+b^2+c^4}{4}+\dfrac{ab+bc+ca}{16}+\dfrac{9}{16}\ge\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow A\ge\dfrac{1}{2}\left(a^2+b^2+c^2\right)-\dfrac{ab+bc+ca}{16}-\dfrac{9}{16}\ge\dfrac{1}{2}\left(a^2+b^2+c^2\right)-\dfrac{a^2+b^2+c^2}{16}-\dfrac{9}{16}\)
\(\Rightarrow A\ge\dfrac{7}{16}\left(a^2+b^2+c^2\right)-\dfrac{9}{16}\ge\dfrac{7}{16}.3\sqrt[3]{\left(abc\right)^2}-\dfrac{9}{16}=\dfrac{3}{4}\) (đpcm)
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.
a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)
b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)
=>đpcm. Dấu bằng xảy ra khi a=b
c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)
Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2
d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)
\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)
a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)
\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)
\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
Bất đẳng thức trên không đúng. Bạn có thể kiểm tra với a = b = -1.
Mình viết thiếu thêm điều kiện \(a+b\ge0\) nữa nhé Sigma CTV