\(\in\) N sao cho 3x - y + 1 và 2x + 3y đều chia hết cho 7 thì x và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)

\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)

\(\Rightarrow 11x+2\vdots 7\)

\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)

\(\Rightarrow x\) chia 7 dư $3$

Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)

\(\Rightarrow 3(7k+3)-y+1\vdots 7\)

\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)

\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$

Vậy $x,y$ chia $7$ đều dư $3$

7 tháng 11 2016

\(17x+17y⋮17\)\(\Leftrightarrow8x+12y+9x+5y⋮17\)\(\Rightarrow4\left(2x+3y\right)+9x+5y⋮17\)

Vì 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17

Vậy với mọi x, y\(\in N\) và 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17

7 tháng 11 2016

cho sửa đề lại là 2x+3y chia hết cho 17