Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
55n+1-55n=55n.(55-1)=55n.54 chia hết cho 54
Vậy 55n+1 chia hết cho 54
Ta có:\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\) chia hết cho 54
Vậy \(55^{n+1}-55^n\) chia hết cho 54 với n là số tự nhiên
a: \(5x^ny^3:4x^2y^2=\dfrac{5}{4}x^{n-2}y\)
Để đây là phép chia hết thì n-2>0
hay n>2
b: \(x^ny^{n+1}:x^2y^5=x^{n-2}y^{n-4}\)
Để đây là phép chia hết thì \(\left\{{}\begin{matrix}n-2>0\\n-4>0\end{matrix}\right.\Leftrightarrow n>4\)
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19
\(a;x^4⋮x^{2n}\Leftrightarrow4\ge2n\Leftrightarrow2\ge n\Rightarrow n=0;1;2\)
\(b;x^ny^3⋮x^2y^{n+1}\Leftrightarrow n\ge2;3\ge n+1\Leftrightarrow\hept{\begin{cases}n\ge2\\2\ge n\end{cases}\Rightarrow n=2}\)