Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)
A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)
A = 4
Vậy A không phụ thuộc vào x
Chúc bn học tốt!
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)
\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)
\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)
\(=10\cdot\dfrac{2}{5}=4\)
\(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)
\(=\frac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\frac{5\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x\left(\sqrt{x}+3\right)+\left(5\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2\sqrt{x^3}+6x+5x+11\sqrt{x}+2+x+11\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{12x+22\sqrt{x}+2\sqrt{x^3}+12}{6x+11\sqrt{x}+\sqrt{x^3}+6}\)
\(=\frac{2\left(6x+11\sqrt{x}+\sqrt{x^3}+6\right)}{6x+11\sqrt{x}+\sqrt{x^3}+6}\)
\(=2\) (ko phụ thuộc vào biến ) (đpcm)
Hướng dẫn trả lời:
ĐKXĐ: 0 < x ≠ 1.
Đặt √x = a (a > 0 và a ≠ 1)
Ta có:
(2+√xx+2√x+1−√x−2x−1).x√x+x−√x−1√x=[2+aa2+2a+1−a−2a2−1].a3+a2−a−1a=[(2+a)(a−1)−(a−2)(a+1)(a+1)(a2−1)].(a+1)(a2−1)a=2a(a+1)(a2−1).(a+1)(a2−1)a=2
\(R=\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)
\(=\frac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\frac{5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
=\(\frac{2x\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x\sqrt{x}+6x+5x+10\sqrt{x}+x+\sqrt{x}+10\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x\sqrt{x}+12x+21\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
@@@@@@@@@@@ Đề sai hay mình sai??@@@@@@@@@@
\(A=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+y}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(x-y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x+y}\cdot\dfrac{x+\sqrt{xy}-\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{xy}+y-x-\sqrt{xy}-y}{x-y}=\dfrac{-x}{x-y}\)
\(P=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\dfrac{\sqrt[3]{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}-x}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\sqrt{x}}\)
\(=\sqrt{x}+\dfrac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)
b) Thay x=49 vào A, ta được:
\(A=\dfrac{7-1}{7-5}=\dfrac{6}{2}=3\)
a) Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)
\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
\(a.x=3-2\sqrt{2}\\ \Rightarrow\sqrt{x}=\sqrt{3-2\sqrt{2}}\\ =\sqrt{2-2\sqrt{2}+1}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}\\ =\left|\sqrt{2}-1\right|\\ =\sqrt{2}-1\left(vì\sqrt{2}>1\right)\)
Thay \(\sqrt{x}=\sqrt{2}-1\) vào A ta được
\(A=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{\sqrt{2}-2}{2}\)
\(b.B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\\ B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{1}{\sqrt{x}-2}\)
\(c,P=A:B\\ P=\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}\\ P=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}\)
\(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\)
Có: \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+1\ge1\left(I\right)\)
Lại có: \(\sqrt{x}\ge0\)
\(\Rightarrow-\sqrt{x}\le0\\ \Rightarrow-\sqrt{x}+2\le2\)
mà \(-\sqrt{x}\le0\)
\(\Rightarrow-\sqrt{x}\left(-\sqrt{x}+2\right)\ge2\)
Kết hợp với \(\left(I\right)\) \(\Rightarrow\) \(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\ge2\)
Vậy gtnn của P = \(2\) khi \(x=10+4\sqrt{6}\)
a: Khi \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thì
\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{1+\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{2-\sqrt{2}}{2}\)
b: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{2x\left(\sqrt{x}+3\right)+\left(5\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x\sqrt{x}+6x+5x+11\sqrt{x}+2+x+11\sqrt{x}+11}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x\sqrt{x}+12x+22\sqrt{x}+13}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
biểu thức này có phụ thuộc vào biến nha bạn