Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)
\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)
\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)
\(=2\sqrt{3}\)
Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
...
\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bất đẳng thức trên lại với nhau, ta được:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)
\(\Leftrightarrow A>4\)(đpcm)
Sai đề nha bạn, 2 số dưới mẫu cuối cùng là \(\sqrt{79}\) và \(\sqrt{80}\) mới theo quy luật
Nhận xét: với mọi \(a\inℕ^∗\) ta có :
\(\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a+1}+\sqrt{a}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{a-1}+\sqrt{a}}=\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}\)
\(=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a-1}+\sqrt{a}\right)\left(\sqrt{a}-\sqrt{a-1}\right)}+\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a+1}+\sqrt{a}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}\)
\(=\sqrt{a}-\sqrt{a-1}+\sqrt{a+1}-\sqrt{a}=\sqrt{a+1}-\sqrt{a-1}\)
\(\Rightarrow\)\(2B=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+\frac{2}{\sqrt{5}+\sqrt{6}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)
\(>\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{81}-\sqrt{79}\)
\(=\sqrt{81}-1=9-1=8\)
\(2B>8\)\(\Rightarrow\)\(B>\frac{8}{2}=4\) ( đpcm )
...
Giúp bn bài 1 thôi
Bài 1:
a, \(\sqrt{7-2\sqrt{10}}=\sqrt{5-2\sqrt{10}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\) (\(\sqrt{5}>\sqrt{2}\)) (đpcm)
b, \(\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\) (đpcm)
Chúc bn học tốt!