Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\); \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" khi \(a=b=c\)
Hy vọng a;b;c dương
Khi đó: \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\) ; \(\frac{b^2}{c^2}+1\ge\frac{2b}{c}\) ; \(\frac{c^2}{a^2}+1\ge\frac{2c}{a}\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt[3]{\frac{abc}{abc}}-3\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)
ta có\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}=2\frac{a}{c}\)
tương tự:\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{c}{b}\)
Cộng 3 về bất đẳng thức trên lại với nhau ta đươc:\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng BĐT Cô - si cho các số dương ta có :
+ ) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\left(1\right)\)
Cmt ta có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\left(2\right)\)
+ ) \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\left(3\right)\)
Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Áp dụng BĐT Cô-si :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\left|\frac{a}{c}\right|\ge\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\left|\frac{b}{a}\right|\ge\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\left|\frac{c}{b}\right|\ge\frac{c}{b}\)
Cộng 3 vế của 3 đẳng thức trên với nhau có :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Vậy ...
Ta có \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge0\)
Áp dụng bài toán trên, ta có
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{a}{c}\) (1)
Chứng minh tương tự, ta được
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\) (2)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\) (3)
Cộng (1)(2)(3), ta được
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{a}{c}+2\frac{b}{a}+2\frac{c}{b}\)
\(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\) \(\left(đpcm\right)\)