K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Giải bài 26 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC cân tại A có hai đường trung tuyến BM và CN, ta cần chứng minh BM = CN.

Giải bài 26 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Ta có: AC = 2.AM, AB = 2. AN, AB = AC (vì ΔABC cân tại A)

⇒ AM = AN.

Xét ΔABM và ΔACN có:

AM = AN

AB = AC

Góc A chung

⇒ ΔABM = ΔACN (c.g.c) ⇒ BM = CN (hai cạnh tương ứng).

(Còn một số cách chứng minh khác, nhưng do giới hạn kiến thức lớp 7 nên mình xin sẽ không trình bày.)

8 tháng 4 2015

Giả sử ∆ABC  cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

Vì ∆ ABC cân tại A=>  AB = AC mà M, N là trung điểm AC, AB nên CM = BN

Do đó ∆CMB ;∆BNC có:

BC chung

CM = BN (cm trên)

AB = AC (∆ABC  cân)

=> BM = CN (đpcm)

5 tháng 8 2017

Giả sử ∆ABC  cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

Vì ∆ ABC cân tại A=>  AB = AC mà M, N là trung điểm AC, AB nên CM = BN

Do đó ∆CMB ;∆BNC có:

BC chung

CM = BN (cm trên)

AB = AC (∆ABC  cân)

=> BM = CN

19 tháng 4 2017

Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN

Do đó ∆CMB ;∆BNC có:

BC chung

CM = BN (cm trên)

AB = AC (∆ABC cân)

=> BM = CN

30 tháng 12 2015

tick mk di bao gio mk hoc roi thi mk giai cho

30 tháng 12 2015

nếu trong định lí ghi vậy thì chắc chắn điều này luồn đúng, đéo cần chứng minh cũng biết

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

#\(N\)

`a,` `GT: AB = AC,` \(\widehat{B}=\widehat{C}\)

`CM: BB' = C``C'`

`BB'` là đường trung tuyến

`-> B'` là trung điểm của `AC`

`-> AB' = B'C` 

`C``C'` là đường trung tuyến

`-> C'` là trung điểm của `AB`

`-> AC' = C'B`

Tam giác `ABC` cân tại `A`

`-> AB = AC`

`-> AC' = AB' = C'B = B'C`

Xét Tam giác `BB'C` và Tam giác `C``C'B:`

`C'B = B'C`

\(\widehat{B}=\widehat{C}\)

`BC` chung

`=>` Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`=> BB' = C``C' (2` cạnh tương ứng `) (đpcm)`

`b, GT: AB' = B'C ; AC'=C'B ; C``C' = BB'`

`KL:` Tam giác `ABC` cân

`BB', C``C'` là đường trung tuyến

giả sử: `BB'` cắt `C``C'` tại `G`

`-> G` là trọng tâm của Tam giác `ABC`

`-> GB = 2/3 BB'`

`-> GC = 2/3 C``C'`

`BB' = C``C' -> GB = GC`

`->` Tam giác `GBC` cân tại `G`

`->`\(\widehat{B_1}=\widehat{C_1}\) 

Xét Tam giác `BB'C` và Tam giác `C``C'B` có:

`BB' = C``C'`

\(\widehat{B_1}=\widehat{C_1}\)

`BC` chung

`=>`Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`-> BC' = B'C`

`-> 1/2 AB = 1/2 AC`

`-> AB = AC`

`->` Tam giác `ABC` cân tại `A (đpcm)`.loading...

loading...

16 tháng 2 2023

giúp mình với

 

19 tháng 9 2023

Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)

\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB

Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)

Do đó, AM = MC = NA = NB

Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:

AN = AM

\(\widehat A\) chung

AC = AB

\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)

\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)

Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)