Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt
A B C H
Cho \(\Delta ABC\)có: \(AB^2+AC^2=BC^2\)đường cao \(AH\)
Chứng minh: \(\Delta ABC\)vuông tại A (tức Pytago đảo)
Bài làm
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Theo giả thiết ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(AH^2=BH.CH\) \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có:
\(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)
\(\widehat{AHB}=\widehat{CHA}=90^0\)
suy ra: \(\Delta ABH~\Delta CAH\)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)
suy ra: \(\widehat{BAC}=90^0\)
Trong 1 tam giac vuong co ti le cua 3 canh
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ)
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2)
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi
Phần c đơn giản lắm :) Vừa nghĩ ra tiếp :
Ta có :
- \(4.\left(S_{ABC}\right)^2=\left(2.S_{ABC}\right)^2\)
\(\Rightarrow\left(AB.AC\right)^2=\left(AH.BC\right)^2\)
\(\Rightarrow AB^2.AC^2=AH^2.BC^2\)
Mà \(BC^2=AB^2+AC^2\)( Pythagores )
\(\Rightarrow AB^2.AC^2=AH^2\left(AB^2+AC^2\right)\)
\(\Rightarrow\frac{1}{AH^2}=\frac{AB^2+BC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Vậy...
Ngồi nháp rồi nghĩ ra phần a :) Sẽ cập nhật khi nghĩ được b , c
[ Tự vẽ hình ]
Áp dụng định lý Pythagores có :
- \(AB^2+AC^2=BC^2\)
- \(AH^2=AC^2-HC^2=AB^2-BH^2\)
\(\Rightarrow AH^2=\frac{AC^2-HC^2+AB^2-HB^2}{2}\)
\(=\frac{\left(AB^2+AC^2\right)-\left(HB^2+HC^2+2HB.HC\right)+2HB.HC}{2}\)
\(=\frac{BC^2-\left(HB+HC\right)^2+2HB.HC}{2}\)
\(=\frac{BC^2-BC^2+2HB.HC}{2}\)
\(=\frac{2HB.HC}{2}\)
\(=HB.HC\)
Vậy \(AH^2=HB.HC.\)
d A C B 1 2 N M
a) \(\Delta CAN:A_1+C=90\Rightarrow C=90-A_1\)
\(A_2=90-A_1=90-\left(90-C\right)=C\)
Tam giác vuông ABM và tam giác vuông CAN: AB = AC ; A2^ = C^ => Tam giác ABM = tam giác CAN (cạnh huyền_góc nhọn) (1)
b) Từ (1) => AM = CN và BM = AN (2 cạnh tương ứng) (*)
Ta có: BM = AN + AM (**)
Từ (*) và (**) => MN = BM + CN
c) Tam giác vuông ABC cân tại A (do AB = AC) => ABC^ = ACB^ = 45o
Mình chưa học tam giác cân rùi còn cách nào khác ko bạn
-tự vẽ hình
a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:
BH2+AH2=AB2
=> AH2=AB2-BH2(1)
Áp dụng định lý pytago vào tam giác vuông AHC ta có:
AH2+HC2=AC2
=> AH2=AC2-HC2(2)
Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)
b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC
Áp dụng định lý pytago vào tam giác vuông EAF ta có:
AE2+AF2=EF2
Áp dụng định lý pytago vào tam giác vuông ABC ta có:
AB2+AC2=BC2
Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2
=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC
c) nghĩ chưa/ko ra >:
-bn nào giỏi giải hộ =.=
1) Số đo góc A bằng C=80
2) 3 cạnh của tam giác vuông là B
3) Kí hiệu đúng là A
4) Vậy AC=4 cm
5) a) Xét tam giác ABD và tam giác AEC có:
<AEC=<ADB=90
<BAD=<EAC (góc chung)
AB=AC (tam giác ABC cân)
Suy ra tam giác BAD=tam giác CAE (cạnh huyền- góc nhọn)
Suy ra BD=EC (vì 2 cạnh tương ứng)
b) Ta có tam giác BAD=tam giác CAE (ở câu a)
Suy ra <ADK=<AEK (vì 2 góc tương ứng)
c) Tam giác GDE ở đâu vậy bạn, bạn xem lại đề rồi mình giải cho
1) C
2) B
3) A
4) D
5) Giải.
a) Tam giác ABC cân tại A => AB = AC
Góc B = góc C
Xét 2 tam giác vuông, EBC và DCB, có:
Góc B = góc C (cmt)
Cạnh BC chung
=> Tam giác EBC = tam giác DCB.
=> BD = CE ( 2 cạnh tương ứng)
Đề câu b,c hơi sai sai bn viết lại đc hk
Vì BC2 = AB2 + AC2 => tam giác ABC vuông ( định lý Py - ta - go đảo )
Vậy tam giác ABC vuông
Vương Đại Nguyên đg cần chứng minh định lý pytago đảo mà bạn