Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các biểu thức đã cho đều xác định
a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)
b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)
\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)
c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)
\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)
d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)
\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)
e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)
\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)
\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)
\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)
f/ Bạn ghi đề sai à?
Lời giải:
Ta có:
VT\(=\frac{1+\cot ^2x}{1-\cot ^2x}+\frac{\cos x}{\cos x-\sin x}=\frac{1+\left(\frac{\cos x}{\sin x}\right)^2}{1-\left(\frac{\cos x}{\sin x}\right)^2}+\frac{\cos x}{\cos x-\sin x}\)
\(=\frac{\sin ^2x+\cos ^2x}{\sin ^2x(1-\frac{\cos ^2x}{\sin ^2x})}+\frac{\cos x(\cos x+\sin x)}{\cos ^2x-\sin ^2x}\)
\(=\frac{1}{\sin ^2x-\cos ^2x}-\frac{\cos x(\cos x+\sin x)}{\sin ^2x-\cos ^2x}\)
\(=\frac{1-\cos ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}=\frac{\sin ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}\)
\(=\frac{\sin x(\sin x-\cos x)}{\sin ^2x-\cos ^2x}=\frac{\sin x}{\sin x+\cos x}\)
Ta có đpcm.
a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)
\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)
b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)
c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)
d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả
Lời giải:
\((1+\sin x)(\cot x-\cos x)=(1+\sin x)(\frac{\cos x}{\sin x}-\cos x)=\cos x(1+\sin x).\frac{1-\sin x}{\sin x}\)
\(=\frac{\cos x(1-\sin ^2x)}{\sin x}=\frac{\cos x.\cos ^2x}{\sin x}=\frac{\cos ^3x}{\sin x}\)
\(\left(1+sinx\right)\left(cotx-cosx\right)=\left(1+sinx\right)\left(\dfrac{cosx}{sinx}-cosx\right)\)
\(=cosx\left(1+sinx\right)\left(\dfrac{1-sinx}{sinx}\right)=\dfrac{cosx\left(1-sin^2x\right)}{sinx}=\dfrac{cos^3x}{sinx}\)
Đề bài ko chính xác
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)