K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(P=\left(\dfrac{2x}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3x}\right)\)

\(=\left(\dfrac{2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x\cdot\left(x-3\right)}\right)\)

\(=\dfrac{2x-x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2\left(x-3\right)-x+1}{x\left(x-3\right)}\)

\(=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(x-3\right)}{2x-6-x+1}\)

\(=\dfrac{x}{x-5}\)

14 tháng 1 2019

a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)

\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)

\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)

\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)

b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2=6x^2+6x+6\)

\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

\(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)

\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)

2 tháng 1 2019

a,b,c > 0

Theo bất đẳng thức Schwarz

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}\)

\(\ge\dfrac{\left(1+1+1\right)^2-4}{a+b+c}=\dfrac{5}{a+b+c}>0\)

11 tháng 7 2017

Giải phương trình

\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\)\(\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)

\(\Leftrightarrow\)\(\dfrac{x+2}{13}+\dfrac{13}{13}+\dfrac{2x+45}{15}-\dfrac{15}{15}=\dfrac{3x+8}{37}+\dfrac{37}{37}+\dfrac{4x+69}{9}-\dfrac{9}{9}\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)=\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)-\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+15=0\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\end{matrix}\right.\)

Do đó: \(x=-15\)

Vậy \(S=\left\{-15\right\}\)

12 tháng 7 2017

Hai ý gần cuối dùng dấu ngoặc nhọn {} nhé bạn!

10 tháng 2 2018

\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)

14 tháng 6 2017

\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)

\(\Leftrightarrow x+15=0\)

\(\Leftrightarrow x=-15\)

Vậy x = -15.

\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\\ \Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\\ \Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)

\(\Leftrightarrow\left(x+15\right)\dfrac{1}{13}+\left(x+15\right)\dfrac{2}{15}=\left(x+15\right)\dfrac{3}{37}+\left(x+15\right)\dfrac{4}{9}\\ \Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

vì:\(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\) nên:

x+15=0 =>x=-15

vậy phương trình có tập nghiệm là S={-15}

NV
20 tháng 11 2018

Đặt \(A=\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{10000}\)

\(=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)=99-B\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>0\Rightarrow99-B< 99\Rightarrow A< 99\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}\)

\(\Rightarrow A=99-B>99-\left(1-\dfrac{1}{100}\right)=98+\dfrac{1}{100}>98\)

Vậy \(98< \dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}< 99\)

22 tháng 11 2018

thanks

a: \(\Leftrightarrow x+2016=0\)

hay x=-2016

b: \(\Leftrightarrow x-100=0\)

hay x=100