Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+2x+1\)
\(=2\left(x^2+x+\frac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
hay \(2x^2+2x+1>0\forall x\)(đpcm)
Này giải chi tiết cho mk cái bước 3 và 4 đi Nguyễn Lê Phước Thịnh
Lời giải:
$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$
$=(x+\frac{1}{2})^2+\frac{3}{4}$
$\geq 0+\frac{3}{4}$
$> 0$
Ta có đpcm.
Lời giải:
Ta thấy:
$9x^2-6x+2=(9x^2-6x+1)+1$
$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$
Vì $(3x-1)^2\geq 0$ với mọi $x$
$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$
Ta có đpcm.
\(\dfrac{x^2+2x+1}{2x^2+x-1}=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(2x-1\right)}\)
=(x+1)/(2x-1)
Đề ạ