Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
a/ ĐK: $x\ne -5$
$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$
Đề này sai
b/ ĐK: $x\ne \pm 1$
$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$
$\to$ ĐPCM
a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-1}{2}\)
b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=-\dfrac{3}{x-3}\)
Bài 1: (Sgk/36):
a. \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\) vì
5y . 28x = 140xy
7 . 20xy = 140xy
=> 5y . 28x = 7 . 20xy
Vậy \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)
b. \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\) vì
3x . 2(x+5) = 6x2+30x
2 . 3x(x+5) = 6x2+30x
=> 3x . 2(x+5) = 2 . 3x(x+5)
Vậy \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)
c. \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\) vì
(x+2) (x2-1) = (x+2) (x-1) (x-1)
=> (x+2) (x2-1) = (x-1) (x+2) (x+1)
Vậy \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)
d. \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)
(x-1) (x2-x-2) = x3-2x2-x+2
(x+1) (x2-3x+2) = x3-2x2-x+2
=> (x-1) (x2-x-2) = (x2-3x+2) (x+1)
Vậy \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)
Lời giải
a)
\(\left(\frac{3}{2x-y}-\frac{2}{2x+y}-\frac{1}{2x-5y}\right).\frac{4x^2-y^2}{y^2}\)
\(=\frac{3(4x^2-y^2)}{(2x-y)y^2}-\frac{2(4x^2-y^2)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)
\(=\frac{3(2x-y)(2x+y)}{(2x-y)y^2}-\frac{2(2x-y)(2x+y)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)
\(=\frac{3(2x+y)-2(2x-y)}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{2x+5y}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{(2x+5y)(2x-5y)-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{4x^2-25y^2-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}=\frac{-25}{2x-5y}+\frac{1}{2x-5y}=\frac{-24}{2x-5y}\)
Ta có đpcm.
b)
\(\frac{x^2-x+1}{x^2+x}.\frac{x+1}{3x-2}.\frac{9x-6}{x^2-x+1}\)
\(=\frac{(x^2-x+1)(x+1).3(3x-2)}{x(x+1)(3x-2)(x^2-x+1)}\)
\(=\frac{3}{x}\) (đpcm)
a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)
đkxđ: x khác 3, x khác -3
(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)
=>3x+9 -6x + x2+3x
<=>x2 + 3x-6x+3x + 9
<=>x2 +9
<=>(x-3).(x+3)
a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)
VT = `[ 2/(3x) -2/(x+1) (x+1)/(3x) -x-1)]: (x-1)/x`
`=[2/(3x)-2/(x+1) . ((x+1)-3x(x+1))/(3x) ] . x/(x-1)`
`= [2/(3x) + 2/(x+1) ((3x-1)(x+1))/(3x) ] . x/(x-1)`
`= [ 2/(3x) + (2(3x-1))/(3x) ] . x/(x-1)`
`= (6x)/(3x) . x/(x-1)`
`= 2 . x/(x-1)`
`= (2x)/(x-1)`
- Bạn xem lại đề bài nkaaaaa.