Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (a-b+c)-(a+c)=-b
<=>a-b+c-a-c=-b
<=>(a-a)+(c-c)-b=-b
<=>0+0-b=-b
<=>-b=-b
Vậy (a-b+c)-(a+c)=-b
b) (a+b)-(b-a)+c=2a+c
<=>a+(b-b)+a+c=2a+c
<=>a+a+c=2a+c
<=>2a+c=2a+c
Vậy (a+b)-(b-a)+c=2a+c
c) -(a+b-c)+(a-b-c)=-2b
<=>-a-b+c+a-b-c=-2b
<=>(-a+a)+(c-c)-(b+b)=-2b
<=>0+0-2b=-2b
<=>-2b=-2b
Vậy -(a+b-c)+(a-b-c)=-2b
d) a(b+c)-a(b+d)=a(c-d)
<=>ab+ac-ab-ad=a(c-d)
<=>a(b+c-b-d)=a(c-d)
<=>a(c-d)=a(c-d)
Vậy a(b+c)-a(b+d)=a(c-d)
e) a(b-c)+a(c+d)=a(b+d)
<=>ab-ac+ac+ad=a(b+d)
<=>a(b-c+c+d)=a(b+d)
<=>a(b+d)=a(b+d)
Vậy a(b-c)+a(c+d)=a(b+d)
1, Chứng minh đẳng thức :
a) (a - b + c) - (a + c) = -b
(a - b + c) - (a + c)
=a-b+c-a-c
=(a-a)+(c-c)-b
=0+0-b
=-b
b) (a + b) - (b - a) + c = 2a + c
(a + b) - (b - a) + c
=a+b-b+a+c
=(a+a)+(b-b)+c
=2a+0+c
=2a+c
c) -( a + b - c) + (a- b- c) = -2b
-( a + b - c) + (a- b- c)
=-a-b+c+a-b-c
=[a+(-a)]+[c+(-c)]-b-b
=0+0-(b+b)
=-2b
d) a( b+c) - a (b +d) =a( c-d )
a( b+c) - a (b +d)
=ab+ac-(ab+ad)
=(ab-ab)+ac-ad
=0+ac-ad
=a(c-d)
e) a (b - c) + a( d+ c) = a( b+d)
a (b - c) + a( d+ c)
=ab-ac+ad+ac
=(ac+(-ac))+ad+ab
=0+ad+ab
=a(d+b)
1
a) \( (a - b + c) - (a + c) \)
\(=\left(a+c-b\right)-\left(a+c\right)\)
\(=\left[\left(a-c\right)-\left(a-c\right)\right]-b\)
\(=0-b\)
\(=-b\)
b) \( (a + b) - (b - a) + c \)
\(=a+b-b+a+c\)
\(=\left(a+a\right)+\left(b-b\right)+c\)
\(=\left(a+a\right)-0+c\)
\(=a+a+c\)
\(=2a+c\)
2
\(P=a+ [( a - 3 ) - (-a - 2)]\)
\(P=a+a-3+a+2\)
\(P=a+a+a-3+2\)
\(P=3a-3+2\)
\(P=0+2\)
\(P=2\)
\(Q=[a + (a +3)] - [( a + 2) - ( a - 2)]\)
\(Q=a+a+3-a-2-a+2\)
\(Q=a+a+3-a+\left(-2-a+2\right)\)
\(Q=2a+3-a+a\)
\(Q=2a+3-2a\)
\(Q=3\)
Vì \(P=2;Q=3\Rightarrow P< Q\)
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau
Ta có :
( a + b ) - ( b - a ) + c
= a + b - b + a + c
= a + a + b - b + c
= 2a + 0 + c
= 2a + c ( đpcm )
\(\left(a-b+c\right)-\left(a+c\right)=a-b+c-a-c=-b\left(ĐPCM\right)\\ \left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\left(ĐPCM\right)\\ -\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\left(ĐPCM\right)\\ a\left(b+c\right)-a\left(b+d\right)=a\left[\left(b+c\right)-\left(b+d\right)\right]=a\left(b+c-b-d\right)=a\left(c-d\right)\left(ĐPCM\right)\\ a\left(b-c\right)+a\left(d+c\right)=a\left(b-c+d+c\right)=a\left(b+d\right)\left(ĐPCM\right)\)
a)(a-b+c)-(a+c)
=a-b+c-a-c
=a-a - b + c-c
=-b
b)(a+b)-(b-a)+c
=a+b-b+a+c
=a+a+c
=2a+c
c)-(a+b-c) +(a-b-c)
= -a -b+c+a-b-c
=-a+a-b-b+c-c
=-2b
d) a(b+c) - a(b+d)
= ab + ac - ab - ad
= ab-ab+ac-ad
=a(c-d)
e) a(b-c) + a(d+c)
= ab -ac + ad + ac
= ab +ad -ac + ac
=a(b+d)
Mik ko viết lại đề:
a, = a - b + c - a - c = ( a- a) + ( c- c) + b = b
b, = a + b - b + a + c = ( a + a) + ( b - b) + c = 2a + c
c, = -a -b + c + a - b -c = ( -a + a) + ( -b -b) + ( c - c) = - 2b
d, = ab + ac - ab - ad = ac - ad = a(c - d)
e, = ab - ac + ad + ac = ab + ad = a( b + d)
Nguyen Thu Ha học giỏi thế
Làm đúng rồi
Ủng hộ nha