Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3
a)\(x^2+x+2=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=>đpcm
b)\(\left(x+3\right)\left(x-11\right)+2003=x^2-8x-33+2003=x^2-8x+1970\)
\(=\left(x^2-2.x.4+16\right)+1954=\left(x-4\right)^2+1954\ge1954>0\)
=>đpcm
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Đặt \(x^2-4x-5=t\Rightarrow x^2-4x-19=t-14\)
Ta có: \(\left(x^2-4x-5\right)\left(x^2-4x-19\right)+50\)
\(=t\left(t-14\right)+50\)
\(=t^2-14t+50\)
\(=t^2-14t+49+1=\left(t-7\right)^2+1>0\forall t\)
Vậy biểu thức trên luôn dương với mọi giá trị của biến.
Chúc bạn học tốt.
-x^2 -y^2 + 2x +2y -3
= (-x^2 + 2x -1)-(y^2 -2y+1)-1
= -(x-1)^2 -(y-1)^2 -1
Vì -(x-1)^2 -(y-1)^2 -1 < 0 với mọi x,y nên -x^2 -y^2 + 2x+ 2y+ 3 luôn nhận giá trị âm với mọi biến.
Chúc bạn học tốt.
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)